УДК: 547.79

ЦИКЛИЧЕСКИЕ СИСТЕМЫ, СОДЕРЖАЩИЕ 1,2,4-ОКСАДИАЗОЛЬНЫЙ ЦИКЛ 1. СИНТЕЗ 5-(1*H*-1,2,3-ТРИАЗОЛ-4-ИЛ)-1,2,4-ОКСАДИАЗОЛОВ — ПОТЕНЦИАЛЬНЫХ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ

© 2007 А.С. Детистов¹, И.А. Журавель², В.Д. Орлов¹

1,3-диполярного циклоприсоединения арилазидов к 3-арил-5-цианометил-1,2,4оксадиазолами и 3-арил-5-ацетонил-1.2.4-оксадиазолами приводят к образованию новых бициклических систем — 5-(5-амино-1*H*-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов и 5-(5-метил-1*H*-1,2,3-триазол-4ил)-1,2,4-оксадиазолов соответственно. Строение полученных соединений подтверждено методами ПМР-, масс-спектрометрии и данными элементного анализа. Представлены результаты PASSпрогноза для соединений данного класса.

Интенсивное использование 1,2,4-оксадиазольной (изоксадизольной) системы в медицинской химии [1-3] в качестве биоизостеров [4, 5] ставит вопрос о разработке и оптимизации методов их синтеза. Особый интерес в этом отношении представляет синтез гетероциклических систем, молекулы которых помимо изоксадиазольного цикла включают в себя другой гетероциклический фрагмент. Это объясняется тем, что сочетание различных фармакофоров в структуре должно приводить к расширению спектра биологической активности.

В качестве объектов исследования нами выбраны соединения, в молекулах которых сочетаются 1,2,4-оксадиазольный и 1,2,3-триазольный циклы. В литературе имеется сообщение [6] о синтезе новых антибиотиков цефалоспоринового ряда с улучшенными характеристиками, в молекулы которых введены эти фрагменты. В работе [7] сообщается о синтезе 5-(пиридил)-3-(1*H*-1,2,3-триазол-1-илалкил)-1,2,4-оксадиазолов и исследовании их в качестве акарицидов и инсектицидов.

Однако, бициклические системы, в которых 1,2,4-оксадиазольный и 1,2,3-триазольный фрагменты связаны непосредственно друг с другом, практически не изучены. Так, имеется лишь одно сообщение, в котором на примере 4-(1,2,4-оксадиазол-3-ил)-1*H*-1,2,3-триазол-5амина исследуется восстановительная перегруппировка 1,2,4-оксадиазольного кольца [8]. Сведения о 5-(1*H*-1,2,3-триазол-4-ил)-1,2,4-оксадиазолах в литературе отсутствуют.

В настоящей работе осуществлён синтез ранее не описанных 5-(5-амино-1*H*-1,2,3-триазол-4ил)-1,2,4-оксадиазолов и 5-(5-метил-1*H*-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов.

В основу метода положена известная реакция 1,3-диполярного циклоприсоединения органических азидов к диполярофилам [9-11]. В качестве диполярофилов нами выбраны 3-арил-5цианометил-1,2,4-оксадиазолы и 3-арил-5-ацетонил-1,2,4-оксадиазолы.

Исходные 3-арил-5-цианометил-1,2,4-оксадиазолы За, в получены реакцией ариламидоксимов **1a,b** [12] с 3-(3,5-диметил-1*H*-1-пиразолил)-3-оксопропанонитрилом **2** [13] (схема 1).

$$R_1 = C_6H_5$$
; 4-CH₃O-C₆H₄

Схема 1

Вторая группа диполярофилов – 3-арил-5-ацетонил-1,2,4-оксадиазолы 5а, в получена реакцией бензамидоксимов **1c,d** с 2,2,6-триметил-4*H*-1,3-диоксин-4-оном **4** (схема 2).

Взаимодействие соединений **3а,** b и **5а,** b с арилазидами **6а-е,f-j**, полученными согласно [14], проходит в метаноле под влиянием метилата натрия и приводит к образованию 5-(5-амино-1*H*-

² Национальный фармацевтический университет. Украина, 61002, г. Харьков, ул. Пушкинская, 53

 $^{^{}I}$ Харьковский национальный университет им. В.Н. Каразина. Украина, 61077, г. Харьков, пл. Свободы, 4

1,2,3-триазол-4-ил)-1,2,4-оксадиазолов **7а-ј** и 5-(5-метил-1*H*-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов **8а-ј** соответственно (схема 3) [15, 16].

$$R_1 = 3.4-CH_2O_2-C_6H_3$$
; 2-CI- C_6H_4
Cxema 2

 $R_1 = C_6H_5$; 4-CH₃O-C₆H₄ $R_2 = C_6H_5$; 4-CH₃-C₆H₄; 3-CH₃O-C₆H₄; 2-CI-C₆H₄; 3-F-C₆H₄

 $R_1 = 3,4-CH_2O_2-C_6H_3$; 2-Cl-C₆H₄ $R_2 = 3,4-di-(CH_3O)-C_6H_3$; 2,5-di-(CH₃O)-C₆H₃; 3-CF₃-C₆H₄; 2,4-di-(F)-C₆H₃; 4-CH₃OOC-C₆H₄ **Cxema 3**

Предполагаемый механизм взаимодействия включает стадию ионизации метиленактивных нитрилов и кетонов под действием сильного основания, 1,3-диполярное циклоприсоединение арилазида к активированному диполярофилу с последующей ароматизацией 1H-1,2,3-триазольного цикла (схемы 4, 5).

Мягкие условия проведения реакции, высокие выходы конечных соединений и отсутствие необходимости в их дальнейшей очистке делает этот метод удобным для получения веществ данного класса. Основные характеристики 5-(1H-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов представлены в таблицах 1-4.

Строение полученных соединений установлено методами ПМР-, масс-спектрометрии и подтверждено данными элементного анализа.

Схема 5

В спектрах ПМР 5-(5-амино-1H-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов наблюдаются пики протонов NH_2 -группы в области 6,83 - 7,05 м.д. с интегральной интенсивностью в 2 протона, а также пики ароматических протонов и протонов заместителей, которые по положению и интегральной интенсивности соответствуют характеру замещения в гетероциклической системе. Спектры ПМР 5-(5-метил-1H-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов содержат сигналы CH_3 -группы в области 2,48 - 2,74 м.д. с интегральной интенсивностью в 3 протона, а также сигналы ароматических протонов и протонов заместителей с положением и интегральной интенсивностью, соответствующими предполагаемой структуре.

В масс-спектре соединения **7g** (рис. 1) наибольшей интенсивностью характеризуется пик молекулярного иона, что свидетельствует о значительной устойчивости молекулы. Первичным актом фрагментации является разрыв связи между 1,2,3-триазольным и 1,2,4-оксадиазольным циклами, и лишь в дальнейшем появляются осколочные ионы, обусловленные отщеплением ароматических ядер и заместителей.

R	N-O N	, R₂ N N	Таблица 1. Константы, выходы и данные элементного анализа 5-(5-амино-1 <i>H</i> -1,2,3-триазол-4-ил)-1,2,4-оксадиазолов 7а-ј					
Соеди-	R_1	R_2	Бругто формула	Выход, %	Ппп °′ '	w(N) _{экспер.} ,	$w(N)_{\text{reop.}}$	
7a	C_6H_5	C_6H_5	$C_{16}H_{12}N_6O$	81	284-286	27.6	27.6	
7b	C_6H_5	4-CH ₃ -C ₆ H ₄	$C_{17}H_{14}N_6O$	87	233-235	26.5	26.4	
7c	C_6H_5	3-CH ₃ O-C ₆ H ₄	$C_{17}H_{14}N_6O_2$	77	203	25.2	25.2	
7d	C_6H_5	2-Cl-C ₆ H ₄	C ₁₆ H ₁₁ ClN ₆ O	93	210-211	24.5	24.7	
7e	C_6H_5	3-F-C ₆ H ₄	C ₁₆ H ₁₁ FN ₆ O	86	210	26.1	26.1	
7f	4-CH ₃ O-C ₆ H ₄	C_6H_5	$C_{17}H_{14}N_6O_2$	75	>300	25.1	25.2	
7g	4-CH ₃ O-C ₆ H ₄	4-CH ₃ -C ₆ H ₄	$C_{18}H_{16}N_6O_2$	68	238-239	24.2	24.1	
7h	4-CH ₃ O-C ₆ H ₄	3-CH ₃ O-C ₆ H ₄	$C_{18}H_{16}N_6O_3$	85	212	23.1	23.1	
7i	4-CH ₃ O-C ₆ H ₄	2-Cl-C ₆ H ₄	$C_{17}H_{13}CIN_6O_2$	84	218-219	22.8	22.8	
7j	4-CH ₃ O-C ₆ H ₄	3-F-C ₆ H ₄	$C_{17}H_{13}FN_6O_2$	83	216-218	23.9	23.9	

Таблица 2. Химические сдвиги, δ, м.д. протонов							
5-(5-амино-1 <i>H</i> -1,2,3-триазол-4-ил)-1,2,4-оксадиазолов 7а-ј в спектрах ПМР							
Соединение	NH ₂ (2H, c)	Ароматические протоны (м)	CH ₃ (3H, c)	CH ₃ O (3H, c)			
7a	6,94	7,53 - 8,24 (10H)	-	-			
7b	6,86	7,37 - 8,25 (9H)	2,43	-			
7c	6,94	7,22 - 8,25 (9H)	-	3,85			
7d	7,05	7,52 - 8,27 (9H)	-	-			
7e	7,05	7,40 - 8,25 (9H)	-	-			
7f	6,94	7,02 - 8,08 (9H)	-	3,82			
7g	6,83	7,05 - 8,18 (8H)	2,41	3,83			
7h	6,91	7,06 - 8,17 (8H)	-	3,84; 3,85			
7i	7,01	7,05 - 8,22 (8H)	-	3,84			
7j	7,01	7,06 - 8,18 (8H)	-	3,84			

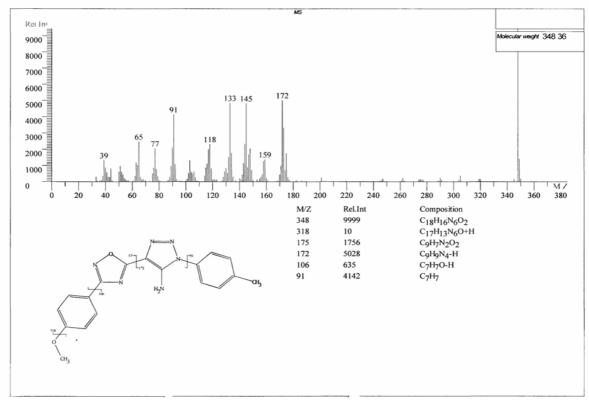


Рисунок 1. Масс-спектр соединения 7g.

	$\begin{bmatrix} R_1 & & & & \\ & N & & & & \\ & N & & & & \\ & N & & & &$		Таблица 3. Константы, выходы и данные элементного анализа 5-(5-метил-1 <i>H</i> -1,2,3-триазол-4-ил)-1,2,4-оксадиазолов 8а-ј				
Соеди- нение	R_1	R_2	Брутто формула	Выход,		w(N) _{экс.} , %	w(N) _{reop.} ,
8a	3,4-CH ₂ O ₂ -C ₆ H ₃	3,4-di-(CH ₃ O)-C ₆ H ₃	$C_{20}H_{17}N_5O_5$	58	230-231	17,2	17,2
8b	3,4-CH ₂ O ₂ -C ₆ H ₃	2,5-di-(CH ₃ O)-C ₆ H ₃	$C_{20}H_{17}N_5O_5$	58	109-211	17,2	17,2
8c	3,4-CH ₂ O ₂ -C ₆ H ₃	3-CF ₃ -C ₆ H ₄	$C_{19}H_{12}F_3N_5O_3$	69	197-298	16,9	17,0
8d	3,4-CH ₂ O ₂ -C ₆ H ₃	2,4-di-(F)-C ₆ H ₃	$C_{18}H_{11}F_2N_5O_3$	60	212	18,2	18,3
8e	3,4-CH ₂ O ₂ -C ₆ H ₃	4-CH ₃ OOC-C ₆ H ₄	$C_{20}H_{15}N_5O_5$	67	253-254	17,3	17,3
8f	2-Cl-C ₆ H ₄	3,4-di-(CH ₃ O)-C ₆ H ₃	$C_{19}H_{16}CIN_5O_3$	52	163	17,6	17,6
8g	2-Cl-C ₆ H ₄	2,5-di-(CH ₃ O)-C ₆ H ₃	$C_{19}H_{16}CIN_5O_3$	97	152-253	17,6	17,6
8h	2-Cl-C ₆ H ₄	3-CF ₃ -C ₆ H ₄	$C_{18}H_{11}ClF_3N_5O$	95	160	17,2	17,3
8i	2-Cl-C ₆ H ₄	2,4-di-(F)-C ₆ H ₃	$C_{17}H_{10}ClF_2N_6O$	97	157-258	18,8	18,8
8j	2-Cl-C ₆ H ₄	4-CH ₃ OOC-C ₆ H ₄	$C_{19}H_{14}CIN_5O_3$	56	214	18,7	18,7

Таблица 2. Химические сдвиги, δ, м.д. протонов								
5-(5-метил-1Н-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов 8а-ј в спектрах ПМР								
Соединение	CH ₃ (3H, c)	Ароматические протоны (м)	CH ₃ O (3H, c)	CH ₂ O ₂ (2H, c)	CH ₃ OOC (3H, c)			
8a	2,65	7,09 - 7,70 (6H)	3,81; 3,87	6,14	-			
8b	2,48	7,09 - 7,73 (6H)	3,74; 3,75	6,15	-			
8c	2,71	7,03 - 8,20 (7H)	-	6,18	-			
8d	2,54	7,02 - 7,95 (6H)	-	6,13	-			
8e	2,73	7,02 - 8,28 (7H)	-	6,14	3,91			
8f	2,62	7,12 - 8,08 (7H)	3,79; 3,82	-	-			
8g	2,48	7,13 - 8,07 (7H)	3,83; 3,84	-	-			
8h	2,69	7,50 - 8,20 (8H)	-	-	-			
8i	2,54	7,38 - 8,07 (7H)	-	-	-			
8j	2,74	7,53 - 8,27 (8H)	-	-	3,92			

Биологическая активность синтезированных 5-(1H-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов спрогнозирована с помощью компьютерной системы PASS C&T (Prediction Activity Spectra for Substances: Complex & Training).

Результаты PASS-прогноза показали, что соединения данного ряда являются потенциальными ингибиторами лигазы, антагонистами бензодиазепиновых рецепторов, регуляторами метаболизма нуклеотидов, ненаркотическими анальгетиками, блокаторами натриевых каналов; спо-

собны проявлять противоэпилептический, анксиолитический, противосудорожный, нейропротекторный, психотропный, ноотропный, антидепрессивный эффекты.

Таким образом, нами разработан препаративный метод получения новых бигетероциклических соединений, которые содержат 1,2,4-оксадиазольный и 1,2,3-триазольный циклы, — 5-(1*H*-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов, основанный на реакциях 1,3-диполярного циклоприсоединения арилазидов к 3-арил-5-цианометил-1,2,4-оксадиазолам и 3-арил-5-ацетонил-1,2,4-оксадиазолам. Предложен возможный механизм этих реакций. Структура полученных соединений подтверждена методами ПМР-, масс-спектрометрии и данными элементного анализа. Представлены результаты компьютерного моделирования биологической активности целевых соединений.

Экспериментальная часть

Температуры плавления определяли на приборе фирмы Buchi (Швейцария) модель B-520. Элементный анализ проводили по методу Дюма вручную. Спектры ПМР соединений **7a-j** и **8a-j** записаны на приборе Varian VXR-400 в ДМСО-D₆, внутренний стандарт – ТМС. Масс-спектр соединения **7g** снимали на масс-спектрометре PE SCIEX API 150EX (детекторы UV и ELS). ТСХ проводили на пластинках Sorbfil-AФВ-УФ. Колоночную хроматографию осуществляли на силикагеле Merck 230-400 меш.

Общая методика синтеза 3-арил-5-цианометил-1,2,4-оксадиазолов 3а,b.

В диоксане (25 мл) при нагревании растворяют 3-(3,5-диметил-1*H*-1-пиразолил)-3-оксопропанонитрил 2 (6.5 г, 40 ммоль), добавляют соответствующий ариламидоксим 1a,b (40 ммоль). Смесь кипятят в течение 6 часов. Контроль полноты прохождения реакции осуществляют с помощью ТСХ. Раствор охлаждают и выливают в ледяную воду (150 мл). Продукт выпадает в виде масла, твердеющего при стоянии. Для очистки конечного продукта используют флеш-хроматографию (силикагель, этилацетат). Выход 3-фенил-5-цианометил-1,2,4-оксадиазола 3a составил 79% с т.п. 76°С, и 3-(4-метоксифенил)-5-цианометил-1,2,4-оксадиазола 3b – 85%, т.п. 66°С.

Общая методика синтеза 3-арил-5-ацетонил-1,2,4-оксадиазолов 5а,b.

Ариламидоксим **1c,d** (0,5 моль) кипятят в перегнанном 2,2,6-триметил-4H-1,3-диоксин-4-оне **4** (1 моль). Затем реакционную смесь охлаждают, при этом выпадает осадок 3-арил-5-ацетонил-1,2,4-оксадиазола, который промывают дихлорметаном или эфиром. Выход 3-(3,4-метилендиоксифенил)-5-ацетонил-1,2,4-оксадиазолов **5a** составил 53% с т.п. 56°C, и 3-(2-хлорфенил)-5-ацетонил-1,2,4-оксадиазолов **5b** – 37%, т.п. 49°C.

Общая методика синтеза 5-(5-амино-1*H*-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов 7а-j.

В сухом метаноле (15 мл) растворяют 3-арил-5-цианометил-1,2,4-оксадиазол **3а,b** (10 ммоль), к реакционной среде прибавляют метанольный раствор (10 мл) метилата натрия (30 ммоль) и выдерживают 15 мин при комнатной температуре. Далее в реакционную смесь вводят арилазид **6а-е** (10 ммоль), добиваясь его растворения, и оставляют при комнатной температуре за 2 – 4 часа. По окончании реакции выпадает кристаллический осадок, его фильтруют, промывают на фильтре метанолом (50 мл). Полученные 5-(5-амино-1*H*-1,2,3-триазол-4-ил)-1,2,4-оксадиазолы **7а-і** представляют собой индивидуальные вещества с характеристиками, представленными в таблицах 1,2.

Общая методика синтеза 5-(5-метил-1*H*-1,2,3-триазол-4-ил)-1,2,4-оксадиазолов 8a-j.

В сухом метаноле (15 мл) растворяют 3-арил-5-ацетонил-1,2,4-оксадиазол $\mathbf{5a,b}$ (10 ммоль), затем прибавляют метанольный раствор (10 мл) метилата натрия (30 ммоль) и выдерживают 15 мин при комнатной температуре. Далее в реакционную смесь вводят арилазид $\mathbf{6f-j}$ (10 ммоль), добиваясь его растворения, и оставляют при комнатной температуре за 3-5 часов. По окончанию реакции образуется кристаллический осадок, его фильтруют, промывают на фильтре метанолом (50 мл). 5-(5-Метил-1H-1,2,3-триазол-4-ил)-1,2,4-оксадиазолы $\mathbf{8a-j}$ при этом образуются чистыми с характеристиками, представленными в таблицах $\mathbf{3}$,4.

Благодарности

Работа выполнена в рамках госбюджетной темы №01.15.06.

Литература

- 1. Jensen L., Watjen F., Honore T. // Adv. Biochem. Psychopharmacol. 1988. Vol. 45. P. 209–217.
- 2. Tully W.R., Gardner C.R., Gillespie R.J., Westwood R. J. // Med. Chem. 1991. Vol. 34. P. 2060-2067.
- 3. Watjen F., Baker R., Engelstoft M. // J. Med. Chem. 1989. Vol. 32. P. 2282-2291.
- 4. Andersen K., Jorgensen A., Braestrup C. // Eur. J. Med. Chem. 1994. Vol. 29. P. 393-399.
- 5. Andersen K.E., Lundt B.F., Jorgensen A.S. // Eur. J. Med. Chem. 1996. Vol. 31. P. 417-425.
- 6. Coene B., Schanck A., Dereppe J. // Journal of Medicinal Chemistry. 1984. Vol. 27. P. 694-700.
- 7. Schaper W., Bastiaans H., Harmsen S. // J. Ger. Offen. 2001. Vol. 34. P. 199-203.
- 8. Korbonits D., Kiss P., Silmon K. // Chemishe Berichte. 1984. Vol. 117. P. 3183-93.
- 9. L'Abbe G. // Chem Revs. 1969. Vol. 69. P. 345-63.
- 10. Hedayatuliah M, Hugueny J. // Synth Commun. 1981. Vol. 11. P. 643-46.
- 11. Albiert A. // Adv. Heterocycl. Chem. 1987. Vol. 40. P. 129.
- 12. Tieman F. // Ber. Dtsch. Chem. Ges. 1885. №18. P. 1689.
- 13. W. Ried, A. Meyer. // Chem. Ber. 1957, №90. P. 2841.
- 14. Forster, Fierz. // J. Chem. Soc. 1907. №91. P. 1350.
- 15. Детистов А.С., Заремба О.В. // Тези доповідей ІІ Всеукраїнської конференції молодих вчених з актуальних питань хімії. Дніпропетровськ. 2004. С. 24.
- 16. Detistov A.S., Zaremba O.V., Kovalenko S.N. // Тезисы III Международной конференции "Химия и биологическая активность кислород- и серусодержащих гетероциклов". Москва. 2006. Том 2. С. 102.

Поступила в редакцию 20 октября 2007 г.

Kharkov University Bulletin. 2007. № 770. Chemical Series. Issue 15(38). Detistov O.S., Zhuravel I.O., Orlov V.D. Cyclic systems containing 1,2,4-oxadiazole ring. 1. Synthesis of 5-(1H-1,2,3-triazol-4-yl)-1,2,4-oxadiazoles – potential bioactive compounds.

5-(5-Amino-1*H*-1,2,3-triazol-4-yl)-1,2,4-oxadiazoles and 5-(5-methyl-1*H*-1,2,3-triazol-4-yl)-1,2,4-oxadiazoles were obtained by 1,3-dipolyar cyclocondensation of arylazides with 3-aryl-5-cyanomethyl-1,2,4-oxadiazoles and 3-aryl-5-acetonyl-1,2,4-oxadiazoles correspondingly. Structure of the compounds obtained was confirmed by NMR-, MS-spectroscopy and proved by elemental analysis.