УДК 547.759.4; 547.821.3

СИНТЕЗ НОВЫХ ПРОИЗВОДНЫХ ИНДОЛИЗИНА НА ОСНОВЕ БРОМИДОВ 2-ХЛОР-*N*-ФЕНАЦИЛПИРИДИНИЯ

© 2007 Г.Е. Хорошилов¹, И.В. Демчак¹

Реакцией замещенных фенацилбромидов с 2-хлорпиридином получены бромиды 2-хлор-*N*-фенацилпиридиния. Последние при взаимодействии с тиазолами Ганча и *N*-арилзамещенными амидами цианоуксусной кислоты в мягких условиях в присутствии двукратного избытка триэтиламина образуют 1-замещенные 2-амино-3-ароилиндолизины.

Бромиды 2-хлор(бром)-*N*-фенацилпиридиния являются удобными синтонами для получения тиазолопиридинов [1, 2], оксазолопиридинов, имидазолопиридинов [2], 1-(2-арил-1-ароилвинил)-2-дицианометилен-1,2-дигидропиридинов [3, 4]. Также данные соли легко вступают во взаимодействие с различными СН-кислотами: малонодинитрилом [5] и 1,3-дикарбонильными соединениями [6] с образованием замещенных индолизинов.

В настоящем исследовании нами разработана простая методика получения бромидов 2-хлор-N-фенацилпиридиния II на основе замещенных фенацилбромидов I и 2-хлорпиридина. Известные по литературным данным методики являются неудобными с точки зрения технического исполнения, так как требуют многочасового нагревания [6, 7] или микроволнового излучения [8]. К тому же выходы конечных солей достаточно низки и составляют 48-55%.

Производные индолизин-1-карбоновых кислот получают, как правило, реакцией диполярного циклоприсоединения [9, 10]. Следует отметить, что среди производных 2-амино-3-ароилиндолизин-1-карбоновых кислот больше всего описаны эфиры [5, 6], а амиды упоминаются лишь один раз [11]. Также в литературе не описаны 2-амино-3-ароил-1-тиазолилиндолизины. Развивая исследования по созданию новых удобных методов синтеза 1-замещенных 2-амино-3-ароилиндолизинов [12, 13], нами изучены реакции взаимодействия бромидов 2-хлор-*N*-фенацилпиридиния II с тиазолами Ганча III и анилидами IV в присутствии двукратного избытка триэтиламина. Данное взаимодействие приводит к соответствующим 1-замещенным 2-амино-3-ароилиндолизинам V и VI.

Реакция, по видимому, протекает через стадию образования соответствующих интермедиатов А и Б. Дальнейшая циклизация по Торпу и дегидрохлорирование в присутствии избытка ТЭА приводит к образованию ароматической индолизиновой системы.

Известно, что в ароматических системах протоны могут смещаться в спектрах ЯМР 1 Н в более слабые поля за счет образования водородных связей [14]. В индолизинах V и VI дублеты протонов C^8 Н проявляются в области 7.88-8.03 м.д. с КССВ 3 Ј = 8.6-9.3 Гц (дублет C^5 Н протона проявляется в области 9.30-9.65 м.д. с КССВ 3 Ј = 6.4-6.5 Гц) (Va-z) и 7.76-7.80 м.д. с КССВ 3 Ј = 8.9-9.2 (дублет C^5 Н протона проявляется в области 9.26-9.4 м.д. с КССВ 3 Ј = 6.4-6.6 Гц) (VIa-d) соответственно (табл. 2). Для сравнения, 2-амино-3-ароил-1-цианоиндолизины [5] имеют следующие спектральные характеристики: дублеты протонов C^8 Н проявляются в области 7.09-7.39 м.д. с КССВ 3 Ј = 9.0 Гц (дублет C^5 Н протона проявляется в области 8.73-9.26 м.д. с КССВ 3 Ј = 6.5-7.1 Гц). На основании этого мы предполагаем, что после циклизации интермедиатов A и Б в конечные индолизины, вероятно, появляються невалентные взаимодействия (ВМВС) между C^8 Н протоном индолизина и атомом азота(килорода) заместителей в первом положении аннелированных систем V и VI.

Аминогруппа в соединениях V и VI достаточно дезактивирована. Так, она не диазотируется в стандартных условиях, кроме того, не удалось получить 4-арил-10-(4-арилтиазол-2-ил)пиримидо[4,5-*b*]индолизины кипячением соединений V в формамиде, хотя 2-амино-3-ароил-1-цианоиндолизины реагируют с формамидом с достаточно хорошим выходом [15]. Косвенно экспериментальные данные подтверждаются спектральными данными: в ИК спектрах амино-

¹ Луганский национальный педагогический университет имени Тараса Шевченко, ул. Оборонная 2, Луганск, 91011, Украина. E-mail: demchak@mail.ru.

группа проявляется в виде полос поглощения низкой интенсивности. На схеме 1 изображены возможные внутримолекулярные водородные связи.

 $\begin{array}{c} \textbf{Va-z} \\ \textbf{V:} \ \textbf{R}^1 = \textbf{R}^2 = \textbf{H} \ \textbf{(a)}; \ \textbf{R}^1 = \textbf{4-Cl}, \ \textbf{R}^2 = \textbf{H} \ \textbf{(b)}; \ \textbf{R}^1 = \textbf{H}, \ \textbf{R}^2 = \textbf{4-Cl} \ \textbf{(c)}; \ \textbf{R}^1 = \textbf{4-CH}_3, \ \textbf{R}^2 = \textbf{H} \ \textbf{(d)}; \ \textbf{R}^1 = \textbf{H}, \ \textbf{R}^2 = \textbf{4-F} \ \textbf{(e)}; \ \textbf{R}^1 = \textbf{H}, \\ \textbf{R}^2 = \textbf{2,5-(CH_3)_2} \ \textbf{(f)}; \ \textbf{R}^1 = \textbf{3,4-(CH_3)_2}, \ \textbf{R}^2 = \textbf{H} \ \textbf{(g)}; \ \textbf{R}^1 = \textbf{H}, \ \textbf{R}^2 = \textbf{4-CH}_3 \ \textbf{(h)}; \ \textbf{R}^1 = \textbf{H}, \ \textbf{R}^2 = \textbf{4-CH}_3 \ \textbf{(i)}; \ \textbf{R}^1 = \textbf{4-C_2H_5O}, \ \textbf{R}^2 = \textbf{H} \ \textbf{(j)}; \\ \textbf{R}^1 = \textbf{H}, \ \textbf{R}^2 = \textbf{3,4-(CH_3)_2} \ \textbf{(k)}; \ \textbf{R}^1 = \textbf{3,4-(CH_3)_2}, \ \textbf{R}^2 = \textbf{2,5-(CH_3O)_2} \ \textbf{(l)}; \ \textbf{R}^1 = \textbf{R}^2 = \textbf{4-CH}_3 \ \textbf{(m)}; \ \textbf{R}^1 = \textbf{4-CH}_3, \ \textbf{R}^2 = \textbf{4-CH}_3 \ \textbf{(n)}; \\ \textbf{R}^1 = \textbf{4-C_2H_5O}, \ \textbf{R}^2 = \textbf{3,4-OCH_2O} \ \textbf{(q)}; \ \textbf{R}^1 = \textbf{4-CH}_3 \ \textbf{(q)}; \\ \textbf{R}^2 = \textbf{2,5-(CH_3O)_2} \ \textbf{(r)}; \ \textbf{R}^1 = \textbf{4-CH}_3, \ \textbf{R}^2 = \textbf{4-CH}_3 \ \textbf{(s)}; \\ \textbf{R}^1 = \textbf{3,4-OCH_2O}, \ \textbf{R}^2 = \textbf{3,4-OCH_2O}, \ \textbf{R}^2 = \textbf{3,4-OCH_2O}, \ \textbf{R}^2 = \textbf{4-CH}_3 \ \textbf{(x)}; \\ \textbf{R}^1 = \textbf{3,4-OCH_2O}, \ \textbf{R}^2 = \textbf{4-F} \ \textbf{(y)}; \ \textbf{R}^1 = \textbf{4-C_2H_5O}, \ \textbf{R}^2 = \textbf{4-F} \ \textbf{(z)}. \ \textbf{VI:} \ \textbf{R}^3 = \textbf{4-CH}_3 \ \textbf{0}, \ \textbf{R}^4 = \textbf{3-F} \ \textbf{(b)}; \\ \textbf{R}^3 = \textbf{4-Bu}, \ \textbf{R}^4 = \textbf{3-F} \ \textbf{(c)}; \ \textbf{R}^3 = \textbf{4-BuO}, \ \textbf{R}^4 = \textbf{3-F} \ \textbf{(d)}. \end{aligned}$

Для проверки наших предположений о возможности возникновения BMBC между C^8H и электроотрицательным атомом заместителя были получены модельные структуры VII-IX. В соединении VII, где возможность образования водородной связи отсутствует, дублет C^3H протона проявляется в области 7.16 м.д. с КССВ $^3J = 8.5$ Гц (дублет C^6H протона проявляется в области 7.93 м.д. с КССВ $^3J = 7.0$ Гц) [5]. Для соединения VIII, где в качестве электронодонорной компоненты водородной связи, выступает атом кислорода сложноэфирной группы, происходит смещение сигнала в более слабое поле: C^3H протон проявляется в области 8.03 м.д. с КССВ $^3J = 9.0$ Гц (дублет C^6H протона проявляется в области 8.19 м.д. с КССВ $^3J = 6.6$ Гц). Наиболее сильное смещение происходит у соединения IX, содержащего тиазольный цикл, где в качестве электронодонорной компоненты водородной связи служит атом азота тиазольного кольца: C^3H протон соединения IX проявляется в виде дублета в области 8.59 м.д. с КССВ $^3J = 9.2$ Гц (дублет C^6H протона проявляется в области 8.00 м.д. с КССВ $^3J = 6.0$ Гц) (табл. 2).

Выходы, температуры плавления и данные элементного анализа ранее не описанных соединений сведены в таблице 1. ИК- и ЯМР ¹H-спектры полученных соединений не противоречат предложенным структурам Va-z, VIa-d, VIII, IX (табл. 2).

Более детальное изучение химических свойств полученных соединений послужит темой для отдельного сообщения.

Таблица 1. Выходы, температуры плавления и данные элементного анализа соединений Va-z, VIa-d, VIII, IX

Соеди-	Брутто-	Вычислено,	% \ Найдено, ⁹	Т. пл., °С	Выход,		
нение	формула	C H N		N	(Растворитель)	%	
Va	$C_{24}H_{17}N_3OS$	72.89\72.93	4.33\4.38	10.63\10.67	201 (BuOH)	65	
Vb	C ₂₄ H ₁₆ ClN ₃ OS	67.05\67.11	3.75\3.69	9.77\9.84	215 (BuOH)	69	
Vc	C ₂₄ H ₁₆ ClN ₃ OS	67.05\66.98	3.75\3.81	9.77\9.81	228-229 (BuOH)	58	
Vd	$C_{25}H_{19}N_3OS$	73.32\73.29	4.68\4.75	10.26\10.23	175-176 (BuOH)	68	
Ve	C ₂₄ H ₁₆ FN ₃ OS	69.72\69.74	3.90\3.85	10.16\10.18	211-212 (BuOH)	31	
Vf	$C_{26}H_{21}N_3OS$	73.73\73.77	5.00\5.06	9.92\9.89	170 (BuOH)	32	
Vg	$C_{26}H_{21}N_3OS$	73.73\73.70	5.00\4.98	9.92\9.90	183 (BuOH)	42	
Vh	C ₂₅ H ₁₉ N ₃ O ₂ S	70.57\70.59	4.50\4.56	9.88\9.91	182 (i-PrOH \ AcOH 2:1)	48	
Vi	$C_{25}H_{19}N_3OS$	73.32\73.34	4.68\4.65	10.26\10.21	234-236 (BuOH)	38	
Vj	$C_{26}H_{21}N_3O_2S$	71.05\71.01	4.82\4.87	9.56\9.52	176 (AcOH)	56	
Vk	$C_{26}H_{21}N_3OS$	73.73\73.77	5.00\5.04	9.92\9.94	200 (BuOH)	41	
Vl	$C_{28}H_{25}N_3O_3S$	69.54\69.50	5.21\5.25	8.69\8.73	216-218 (BuOH)	45	
Vm	$C_{26}H_{21}N_3OS$	73.73\73.69	5.00\4.97	9.92\9.98	209 (BuOH)	32	
Vn	$C_{26}H_{21}N_3O_2S$	71.05\71.11	4.82\4.78	9.56\9.55	176 (BuOH)	47	
Vo	$C_{27}H_{23}N_3O_2S$	71.50\71.55	5.11\5.06	9.26\9.28	185 (BuOH)	41	
Vp	$C_{27}H_{23}N_3O_3S$	69.06\69.12	4.94\4.92	8.95\9.01	186-188 (AcOH)	42	
Vq	C ₂₇ H ₂₁ N ₃ O ₄ S	67.07\67.01	4.38\4.34	8.69\8.73	164-166 (BuOH)	50	
Vr	$C_{27}H_{23}N_3O_4S$	66.79\66.86	4.77\4.80	8.65\8.61	208 (BuOH)	22	
Vs	$C_{27}H_{23}N_3O_2S$	71.50\71.53	5.11\5.16	9.26\9.23	191-193 (BuOH)	49	
Vt	$C_{25}H_{16}CIN_3O_3S$	63.36\63.40	3.40\3.34	8.87\8.90	190 (BuOH)	51	
Vu	$C_{26}H_{21}N_3O_2S$	71.05\71.10	4.82\4.88	9.56\9.54	150-151 (BuOH)	39	
Vv	$C_{27}H_{23}N_3O_2S$	71.50\71.52	5.11\5.05	9.26\9.19	222-223 (BuOH)	38	
Vw	$C_{27}H_{21}N_3O_3S$	69.36\69.31	4.53\4.58	8.99\9.03	180 (BuOH)	45	
Vx	$C_{26}H_{19}N_3O_3S$	68.86\68.94	4.22\4.19	9.27\9.29	196 (BuOH)	44	
Vy	$C_{25}H_{16}FN_3O_3S$	65.64\65.71	3.53\3.59	9.19\9.23	198-202 (BuOH)	38	
Vz	$C_{26}H_{20}FN_3O_2S$	68.25\68.21	4.41\4.48	9.18\9.17	192-193 (BuOH)	28	
VIa	$C_{23}H_{18}CIN_3O_3$	65.79\65.83	4.32\4.29	10.01\10.08	207.5 (EtOH)	39	
VIb	C ₂₂ H ₁₆ FN ₃ O ₂	70.77\70.71	4.32\4.36	11.25\11.18	219 (EtOH)	13	
VIc	C ₂₆ H ₂₄ FN ₃ O ₂	72.71\72.76	5.63\5.69	9.78\9.71	233-237 (EtOH)	19	
VId	C ₂₆ H ₂₄ FN ₃ O ₃	70.10\70.15	5.43\5.47	9.43\9.49	233-237 (EtOH)	30	
VIII	$C_{11}H_{12}N_2O_2$	64.69\64.74	5.92\5.98	13.72\13.75	122-125 (MeOH)	25	
IX	C ₁₇ H ₁₃ N ₃ S	70.08\70.13	4.50\4.56	14.42\14.39	129-130 (EtOH\H ₂ O 1:1)	68	

Экспериментальная часть

Спектры ЯМР 1 Н синтезированных соединений регистрировали на следующих приборах: «Вruker AM-300», 300 МГц (ДМСО d6) (Vb); «Вruker-DPX 300», 300 МГц (ДМСО d6) (Vc, Vt-v, Vx, Vy, VIa-d); «Вruker-DPX 200», 200 МГц (ДМСО d6) (VIII, IX); «Вruker DPX-400», 400 МГц (ДМСО d6 + CCl₄) (Ve, Vf, Vz); «Вruker DRX-500», 500 МГц (ДМСО d6) (Va, Vd, Vg-Vs, Vw). Везде внутренний стандарт — ТМС. ИК спектры регистрировали на приборе ИКС-40 в вазелиновом масле. Температуру плавления измеряли на блоке Кофлера. Контроль за ходом реакции и чистотой полученных соединений осуществляли методом ТСХ (пластины Silufol UV-254, ацетон-гексан 3:5, проявитель — пары йода).

Бромиды 2-хлор-*N***-фенацилпиридиния** (II) (Общая методика). Смесь 40.0 ммоль 2-хлорпиридина и 42.0 ммоль соответствующего замещенного фенацилбромида I нагревают без растворителя при температуре 80 °C в течении 2-х часов. После остывания реакционную массу заливают 25 мл ацетона и оставляют при комнатной температуре. Через сутки отфильтровывают, промывают ацетоном и получают соответствующие соли II. (Выходы от 42 до 88%).

- **2-Амино-3-ароил-1-(4-арилтиазолил-2)индолизины** (Va-z) (Общая методика). К суспензии 2.5 ммоль соли II и 2.5 ммоль тиазола III в 20 мл этанола добавляют 5.0 ммоль (0.70 мл) триэтиламина и перемешивают при комнатной температуре в течении 3-х часов. Затем помещают в холодильник до следующего дня. Образовавшийся осадок отфильтровывают, промывают этанолом, затем гексаном. Перекристаллизовывают из подходящего растворителя и получают соединения Va-z (табл. 1, 2).
- **2-Амино-3-ароил-***N***-арилиндолизин-1-карбоксамиды** (VIa-d) (Общая методика). К суспензии 2.5 ммоль соли II и 2.5 ммоль анилида IV в 20 мл этанола добавляют 5.0 ммоль (0.70 мл) триэтиламина и перемешивают при комнатной температуре в течении 3-х часов, затем помещают в холодильник до следующего дня. Образовавшийся осадок отфильтровывают, промывают этанолом, затем гексаном. Перекристаллизовывают из этанола и получают соединения VIa-d (табл. 1, 2).
- **2-(1-Метилпиридин-2(1***H***)-илиден)малононитрил** (VII). Методика синтеза и спектральные характеристики соответствуют представленным в работе [5].
- (*E*)-Этил-2-циано-2-(1-метилпиридин-2(1*H*)-илиден)ацетат (VIII). К суспензии 2.0 ммоль (0.5 г) йодида *N*-метил-2-хлорпиридиния и 2.0 ммоль (0.21 мл) цианоуксусного эфира в 15 мл этанола добавляют 4.0 ммоль (0.56 мл) триэтиламина и перемешивают при комнатной температуре до полного растворения исходных реагентов (около 2-х часов). Фильтруют через складчатый фильтр, переносят раствор в выпаривательную чашку и оставляют при комнатной температуре. Образовавшееся вещество заливают 3 мл дистиллированной воды и через 5 часов отфильтровывают, промывают дистиллированной водой, затем гексаном и получают продукт VIII (табл. 1, 2).
- (*E*)-2-(1-Метилпиридин-2(1*H*)-илиден)-2-(4-фенилтиазолил-2)ацетонитрил (IX). К суспензии 2.0 ммоль (0.5 г) йодида *N*-метил-2-хлорпиридиния и 2.0 ммоль (0.4 г) 2-(4-фенилтиазолил-2)-ацетонитрила в 15 мл этанола добавляют 4.0 ммоль (0.56 мл) триэтиламина и перемешивают при комнатной температуре до полного растворения исходных реагентов (15 минут). Затем фильтруют через складчатый фильтр и выдерживают 24 часа при комнатной температуре. Осадок отфильтровывают, промывают холодным этанолом, затем гексаном и получают продукт IX (при необходимости перекристаллизовывают из смеси $EtOH \setminus H_2O$ 1:1) (табл. 1, 2).

Литература

- 1. Pauls H., Kröhnke F. Chem. Ber. 1976. Bd. 109. s. 3646-3652.
- 2. Babaev E.V., Tsisevich A.A. J. Chem. Soc., Perking Trans. 1. 1999. p. 399-401.
- 3. Хорошилов Г.Е. ХГС. 2001. № 9. с. 1245-1249.
- 4. Аитов И.А., Нестеров В.Н., Шаранин Ю.А., Стручков Ю.Т. Изв. АН. Сер. Хим. 1996. с. 434-436
- 5. Pauls H., Kröhnke F. Chem. Ber. 1977. Bd. 110. s. 1294-1303.
- 6. Nugent R., Murphy M. J. Org. Chem. 1987. Vol. 52. № 11. p. 2206-2208.
- 7. Djerassi C., Pettit G. J. Amer. Chem. Soc. 1954. Vol. 76. p. 4470.

- 8. Vega J.A., Vaquero J.J., Alvarez-Builla J., Ezquerra J., Hamdouchi C. Tetrahedron. 1999. Vol. 55. p. 2317-2336.
- 9. Терентьев П.В., Виноградов С.М., Кост. А.Н. ХГС 1980. №5. с. 651-656.
- 10. Бабаев Е.В., Пасичниченко К.Ю., Рыбаков Б.В., Жуков С.Г. ХГС 2000. №10. с. 1378-1384
- 11. Demchenko A.M., Khairulin A.R., Lozinskii M.O. In book «International conference chemistry of nitrogen containing heterocycles CNCH-2006». Kharkiv. 2006. p. 33.
- 12. Khoroshilov G.E., Demchak I.V. In book «International conference chemistry of nitrogen containing heterocycles CNCH-2006». Kharkiv. 2006. p. 222.
- 13. Хорошилов Г.Е. В кн. Тезисы докладов международной научной конференции «Органический синтез и комбинаторная химия». Москва, Звенигород. 1999. с. 163.
- 14. Гюнтер Х. Введение в курс спектроскопии ЯМР. М.: Мир. 1984.
- 15. Хорошилов Г.Е., Демчак И.В., Емельянова М.В. ХГС. 2007. № 1. с. 133.

Поступила в редакцию 3 октября 2007 г.

Kharkov University Bulletin. 2007. № 770. Chemical Series. Issue 15(38). G.E. Khoroshilov, I.V. Demchak. Synthesis of new indolizines derivatives on the basis of 2-chloro-N-Phenacylpyridinium bromides.

Reaction of substituted phenacylbromides with 2-chloropyridine results in 2-chloro-*N*-phenacylpyridinium bromides. These compounds interact with thiazoles and anilides under soft conditions and double excess of triethylamine forming 1-substituted 2-amino-3-aroylindolizines.

Таблица 2. ИК и ЯМР 1 Н спектры соединений Va-z, VIa-d, VIII, IX

Соели-	$egin{array}{ccccc} & & & & & & & & & & & & & & & & &$			Спектр ЯМР 1 Н, δ , м.д., J , Γ ц				
			NH ₂ ***, уш. с	T _{anov}				
1	2	3	4	5	6			
Va	3472 3328 3210	1654	6.40	7.00 (1H, т, C^6 H, $J = 7.0$); 7.35 (1H, т, C^7 H, $J = 7.3$); 7.44 (1H, т, $J = 7.2$); 7.55-7.65 (6H, м); 7.90 (1H, д, C^8 H, $J = 8.6$); 8.00 (4H, м); 9.43 (1H, д, C^5 H, $J = 6.4$)	-			
Vb	3480 3258 3208	1662	6.47	6.95 (1H, т, C_6 H, $J = 7.2$); 7.28-7.70 (8H, м); 7.80-8.00 (4H, м); 9.57 (1H, д, C^5 H, $J = 6.4$)	-			
Vc	3484 3261 3189	1651	6.37	7.02 (1H, т, C^6 H, $J = 7.0$); 7.50 (2H, д, $J = 7.8$); 7.62 (6H, м); 7.88 (1H, д, $J = 8.6$); 8.08 (3H, м); 9.49 (1H, д, C^5 H, $J = 6.5$)	-			
Vd	3478 3330 3254	1667	6.42	6.98 (1H, т, C^6 H, $J = 7.1$); 7.31-7.46 (5H, м); 7.55 (3H, м); 7.89 (1H, д, C^8 H, $J = 8.8$); 7.98 (1H, с, $H_{\text{тиазол}}$); 8.02 (2H, д, $J = 7.3$); 9.43 (1H, д, C^5 H, $J = 6.4$)	2.42 (3H, c, CH ₃)			
Ve	3470 3331 3212	1661	6.32	6.88 (1H, т, C^6 H, $J = 6.9$); 7.09 (2H, т, $J = 7.2$); 7.44 (1H, т, C^7 H, $J = 7.0$); 7.50-7.63 (6H, м); 7.82 (1H, д, $J = 8.8$; 7.92 (2H, т, $J = 6.8$); 9.64 (1H, д, C^5 H, $J = 6.5$)	-			
Vf	3472 3264 3120	1657	6.28	6.87 (1H, т, C^6 H, $J = 7.0$); 7.00 (1H, д, $J = 7.2$); 7.07 (1H, д, $J = 7.5$); 7.17 (1H, c); 7.30 (1H, c); 7.43 (1H, т, C^7 H, $J = 7.4$); 7.55 (5H, м); 7.82 (1H, д, $J = 7.6$); 9.65 (1H, д, C^5 H, $J = 6.4$)	2.34 (3H, c, CH ₃); 2.38 (3H, c, CH ₃)			
Vg	3468 3325 3189	1660	6.40	6.98 (1H, т, C^6 H, $J = 6.9$); 7.33-7.46 (6H, м); 7.55 (1H, т, $J = 7.3$); 7.89 (1H, д, $J = 7.2$); 7.97 (1H, c, $H_{\text{тиазол}}$); 8.01 (2H, д, $J = 9.0$); 9.44 (1H, д, C^5 H, $J = 6.5$)	2.31 (3H, c, CH ₃); 2.33 (3H, c, CH ₃)			
Vh	3474 3311 3158	1650	6.40	6.98 (3H, м); 7.56-7.64 (6H, м); 7.82 (1H, c, $H_{\text{тиазол}}$); 7.88 (1H, д, C^8 H, $J = 8.7$); 7.93 (2H, д, $J = 7.9$); 9.44 (1H, д, C^5 H, $J = 6.4$)	3.80 (3H, c, OCH ₃)			
Vi	3469 3301 3211	1656	6.40	7.00 (1H, т, C^6 H, $J = 6.8$); 7.24 (2H, д, $J = 7.6$); 7.56-7.64 (6H, м); 7.90 (4H, м); 9.44 (1H, д, C^5 H, $J = 6.4$)	2.33 (3H, c, CH ₃)			
Vj	3481 3358 3164	1653	6.43	6.97 (1H, т, C^6 H, $J = 6.9$); 7.09 (2H, д, $J = 7.2$); 7.35 (1H, т, $J = 7.2$); 7.44 (2H, т, $J = 7.5$); 7.53 (1H, т, C^7 H, $J = 7.4$); 7.61 (2H, д, $J = 7.6$); 7.88 (1H, д, C^8 H, $J = 8.9$); 7.97 (1H, c, $H_{\text{тиазол}}$), 8.02 (2H, д, $J = 7.3$); 9.39 (1H, д, C^5 H, $J = 6.5$)	1.38 (3H, т, OCH ₂ CH ₃); 4.13 (2H, кв, <u>CH</u> ₂ CH ₃)			

1	2	3	4	5	6
Vk	3472 3264 3120	1651	6.40	6.98 (1H, т, C^6 H, $J = 6.8$); 7.18 (1H, д, $J = 7.3$); 7.54-7.65 (6H, м); 7.70 (1H, д, $J = 7.5$); 7.75 (1H, c); 7.86 (1H, c, $H_{\text{тиазол}}$); 7.89 (1H, д, $J = 9.0$); 9.42 (1H, д, C^5 H, $J = 6.4$)	2.24 (3H, c, CH ₃); 2.26 (3H, c, CH ₃)
Vl	3480 3271 3182	1648	6.40	6.96 (2H, д, J = 7.4); 7.10 (1H, д, J = 7.6); 7.38 (3H, м); 7.60 (2H, м); 7.90 (1H, д, J = 9.2); 8.00 (1H, с, $H_{\text{тиазол}}$); 9.34 (1H, д, C^5 H, $J = 6.4$)	2.25 (3H, c, CH ₃); 2.30 (3H, c, CH ₃); 3.75 (3H, c, OCH ₃); 3.90 (3H, c, OCH ₃)
Vm	3481 3302 3145	1663	6.41	6.98 (1H, т, C^6 H, $J = 6.9$); 7.24 (2H, д, $J = 7.5$); 7.40 (2H, д, $J = 7.8$); 7.52-7.57 (3H, м); 7.87-7.91 (3H, м); 7.93 (1H, c, $H_{\text{тиазол}}$); 9.42 (1H, д, C^5 H, $J = 6.4$)	2.32 (3H, c, CH ₃); 2.42 (3H, c, CH ₃)
Vn	3478 3365 3177	1667	6.42	7.00 (3H, м); 7.40 (3H, д, $J = 7,3$); 7.52-7.58 (2H, м); 7.82 (1H, c, $H_{\text{тиазол}}$); 7.89 (1H, д, C^8 H, $J = 9.0$); 7.94 (2H, д, $J = 7.6$); 9.42 (1H, д, C^5 H, $J = 6.5$)	2.40 (3H, c, CH ₃); 3.80 (3H, c, OCH ₃)
Vo	3470 3326 3215	1661	6.46	6.97 (1H, т, C^6 H, $J = 6.8$); 7.09 (2H, д, $J = 7.2$); 7.25 (2H, д, $J = 7.5$); 7.54 (1H, т, C^7 H, $J = 7.4$); 7.62 (2H, д, $J = 7.6$); 7.86-7.93 (4H, м); 9.38 (1H, д, C^5 H, $J = 6.4$)	1.38 (3H, т, OCH ₂ <u>CH₃</u>); 2.32 (3H, с, CH ₃); 4.13 (2H, д.д, O <u>CH₂</u> CH ₃)
Vp	3478 3318 3183	1660	6.45	6.98-7.10 (5H, м); 7.52 (1H, т, C^7 H, J = 7.5); 7.61 (2H, д, J = 7.8); 7.82 (1H, c, $H_{\text{тиазол}}$); 7.86 (1H, д, C^8 H, J = 8.8); 7.92 (2H, д, J = 7.6); 9.38 (1H, д, C^5 H, J = 6.4)	1.38 (3H, т, OCH ₂ CH ₃); 3.80 (3H, с, OCH ₃); 4.13 (2H, д.д, O <u>CH</u> ₂ CH ₃)
Vq	3481 3303 3218	1654	6.38	6.80-7.95 (11H, м); 9.39 (1H, д, C^5 H, $J = 6.5$)	1.47 (3H, т, OCH ₂ CH ₃); 4.12 (2H, д.д, <u>CH</u> ₂ CH ₃); 6.02 (2H, с, OCH ₂ O)
Vr	3468 3261 3204	1666	6.48	6.96 (2H, м); 7.10 (3H, м); 7.53 (1H, т, C^7 H, $J = 7.4$); 7.64 (3H, м); 7.89 (1H, д, $J = 8.8$); 8.02 (1H, с, $H_{\text{тиазол}}$); 9.30 (1H, д, C^5 H, $J = 6.4$)	3.76 (3H, c, OCH ₃); 3.87 (3H, c, OCH ₃); 3.90 (3H, c, OCH ₃)
Vs	3471 3329 3214	1659	6.40	6.95 (3H, м); 7.40 (2H, д, J = 7.8); 7.55 (3H, м); 7.82 (1H, с, $H_{\text{тиазол}}$); 7.88 (1H, д, C^8 H, J = 8.7); 7.92 (2H, д, J = 7.6); 9.43 (1H, д, C^5 H, J = 6.4)	1.33 (3H, т, CH ₂ CH ₃ ,); 2.42 (3H, с, CH ₃); 4.07 (2H, д.д, ОСН ₂ CH ₃)
Vt	3484 3346 3173	1660	6.48	6.95 (1H, т, С ⁶ H, J = 6.8); 7.08 (1H, д, J = 7.5); 7.18 (2H, м); 7.49 (2H, д, J = 7.8); 7.55 (1H, т, С ⁷ H, J = 7.5); 7.86 (1H, д, J = 8.6); 8.04 (3H, д, J = 7.8); 9.40 (1H, д, С ⁵ H, J = 6.5)	6.18 (2H, c, OCH ₂ O)
Vu	3481 3258 3173	1650	6.46	6.98 (2H, м); 7.37 (3H, м); 7.57 (5H, м); 7.88 (1H, д, $J = 8.9$); 8.22 (1H, c, $H_{\text{тиазол}}$); 9.40 (1H, д, C^5 H, $J = 6.5$)	2.43 (3H, c, CH ₃); 3.84 (3H, c, OCH ₃)
Vv	3475 3315 3201	1648	6.44	6.95 (1H, т, С ⁶ H, J = 7.0); 7.13-7.27 (3H, м); 7.35 (1H, д, J = 7.4); 7.56 (2H, т, J = 7.4); 7.71 (1H, д, J = 7.9); 7.76 (1H, c), 7.88 (2H, м), 9.40 (1H, д, С ⁵ H, J = 6.5)	2.27 (3H, c, CH ₃); 2.30 (3H, c, CH ₃); 3.76 (3H, c, OCH ₃)

1	2	3	4	5	6
Vw	3479 3308 3215	1665	6.35	6.90 (2H, м); 7.33 (2H, c); 7.40 (1H, c); 7.55 (3H, м); 7.84 (1H, c, $H_{\text{тиазол}}$); 7.87 (1H, д, $J = 8.8$); 9.45 (1H, д, C^5 H, $J = 6.4$)	2.30 (3H, c, CH ₃); 2.35 (3H, c, CH ₃); 6.05 (2H, c, OCH ₂ O)
Vx	3484 3318 3167	1664	6.53	6.99 (1H, т, C^6 H, $J = 7.0$); 7.07 (1H, д, $J = 7.5$); 7.15-7.29 (4H, м); 7.54 (1H, т, C^7 H, $J = 7.4$); 7.82-7.94 (4H, м); 9.40 (1H, д, C^5 H, $J = 6.4$)	2.37 (3H, c, CH ₃); 6.17 (2H, c, OCH ₂ O)
Vy	3481 3321 3158	1649	6.50	7.00 (1H, т, C^6 H, $J = 6.8$); 7.08 (1H, д, $J = 7.4$); 7.16-7.32 (4H, м); 7.55 (1H, т, C^7 H, $J = 7.3$); 7.88 (1H, д, $J = 8.6$); 7.98 (1H, с, $H_{\text{тиазол}}$); 8.60 (2H, м); 9.41 (1H, д, C^5 H, $J = 6.4$)	6.17 (2H, c, OCH ₂ O)
Vz	3484 3330 3152	1667	6.34	6.85 (1H, т, C^6 H, $J = 6.8$); 6.98 (2H, д, $J = 7.6$); 7.18 (2H, т, $J = 7.8$); 7.37 (1H, т, C^7 H, $J = 7.4$); 7.54 (1H, c, $H_{\text{тиазол}}$); 7.60 (2H, д, $J = 8.0$); 7.79 (1H, д, $J = 8.9$); 7.82 (2H, т, $J = 7.3$); 9.56 (1H, д, C^5 H, $J = 6.4$)	1.48 (3H, т, OCH ₂ CH ₃); 4.12 (2H, д.д, O <u>CH</u> ₂ CH ₃)
VIa	3494 3442 3382 3262	1668 1670	5.80 9.08	6.90-7.24 (4H, м); 7.28-7.64 (5H, м); 8.02 (2H, т, J = 7.2); 9.26 (1H, д, С ⁵ H, J = 6.4)	3.88 (3H, c, OCH ₃)
VIb	3493 3446 3379 3261	1672 1666	5.68 9.77	6.82 (1H, т, J = 9.8); 6.92 (1H, т, J = 9.4); 7.22-7.48 (3H, м); 7.58 (6H, м); 7.80 (1H, д, J = 9.2); 9.33 (1H, д, C^5H , $J = 6.6$)	-
VIc	3490 3441 3378 3265	1670 1664	5.70 9.83	6.84-6.96 (2H, м); 7.30-7.52 (7H, м); 7.58 1H, д, J = 12.0); 7.78 (1H, д, J = 8.9); 9.36 (1H, д, J = 6.5)	0.92 (3H, т, CH ₂ CH ₃); 1.34 (2H, кв, <u>CH</u> 2CH ₃); 1.63 (2H, кв, ArCH ₂ CH ₂); 2.68 (2H, т, Ar <u>CH</u> 2CH ₂)
VId	3491 3443 3380 3260	1680 1670	5.76 9.86	6.83-6.96 (2H, м); 7.08 (2H, д, J = 10.2); 7.29-7.48 (3H, м); 7.50-7.64 (3H, м); 7.76 (1H, д, J = 9.0); 9.40 (1H, д, J = 6.4)	0.96 (3H, т, CH ₂ CH ₃); 1.46 (2H, кв, <u>CH</u> ₂ CH ₃); 1.74 (2H, кв, OCH ₂ CH ₂); 4,08 (2H, т, O <u>CH</u> ₂ CH ₂)
VIII	-	1716 2172	-	7.05 (1H, $_{\rm T}$, $_{\rm C}^{\rm 5}$ H, $_{\rm J}$ = 6.6); 7.78 (1H, $_{\rm T}$, $_{\rm C}^{\rm 4}$ H, $_{\rm J}$ = 9.0); 8.03 (1H, $_{\rm A}$, $_{\rm C}^{\rm 3}$ H, $_{\rm J}$ = 9.0); 8.19 (1H, $_{\rm A}$, $_{\rm C}^{\rm 6}$ H, $_{\rm J}$ = 6.6)	1.18 (3H, т, <u>CH</u> ₃ CH ₂ , J = 7.2); 3.88 (3H, с, CH ₃); 4.05 (2H, д.д, CH ₃ <u>CH</u> ₂ , J = 7.2)
IX	-	2164	-	6.79 (1H, т, $J = 6.7$); 7.25-7.43 (3H, м); 7.08-7.17 (2H, м); 7.89 (2H, д, $J = 7.0$); 8.00 (1H, д, C^5 H, $J = 6.0$); 8.59 (1H, д, C^3 H, $J = 9.2$)	3.92 (3H, c, CH ₃)

^{* -} для соединений VIa-d также сигнал NH группы; ** - для соединений VIII, IX; *** - для соединений VIa-d также сигнал NH группы.