УДК 669.018.869.87.75

ДІАГРАМА ФАЗОВИХ РІВНОВАГ СИСТЕМИ Y-Ga-Sb ПРИ 500 °C

© 2010 І. С. Антонишин, С. В. Орищин, О. В. Жак¹

Методами рентгенофазового, рентгеноструктурного та мікроструктурного аналізів уперше досліджено взаємодію компонентів у системі Y-Ga-Sb та побудовано ізотермічний переріз діаграми стану цієї системи при 500 °C. Виявлено існування твердого розчину значної протяжності на основі бінарного антимоніду Y₅Sb₃ із структурою типу Mn₅Si₃. Вперше синтезовано нову тернарну сполуку ~Y₅GaSb₃ та висловлено припущення про її ізоструктурність із сполукою Ho₅GaSb₃ (надструктура до типу Sm₅Ge₄).

Ключові слова: рентгенівський аналіз, діаграма фазових рівноваг, твердий розчин, інтерметалід, кристалічна структура.

Вступ. Серед систем *R*-Ga-Sb (R – рідкісноземельний метал) діаграма фазових рівноваг при 500 °C побудована лише для системи Ho-Ga-Sb, в якій виявили існування тернарної сполуки Ho₅GaSb₃, кристалічна структура якої є впорядкованою надструктурою до бінарного типу Sm₅Ge₄, та обмежений твердий розчин галію у бінарній фазі Ho₅Sb₃ (структура типу (**CT**) Mn₅Si₃) [1, 2]. Інші системи вивчали лише з метою синтезу окремих тернарних сполук та дослідження їхніх кристалічних структур [3-6]. Мета нашої роботи – систематичне дослідження вза-ємодії компонентів у системі Y-Ga-Sb при 500 °C, синтез нових тернарних фаз та встановлення їхніх структур.

Огляд подвійних систем. Подвійні системи, які обмежують потрійну систему Y-Ga-Sb, детально вивчали раніше [7-9]. Для *системи Y-Ga* побудовано діаграму стану [8, 9] і виявлено існування шести бінарних сполук [7]. Галіди YGa₂ (CT AlB₂) і YGa (CT CrB) кристалізуються при охолодженні розплаву при 1350 і 1385 °C, відповідно. Сполуки YGa₆ (CT PuGa₆) та Y₅Ga₃ (CT Mn₅Si₃) утворюються за перитектичними реакціями, відповідно, при ~ 300 та 1295 °C. За даними праці [10] фаза Y₂Ga₃ [11] належить до типу Tm₃Ga₅ і має склад Y₃Ga₅. Спосіб утворення бінарних галідів Y₃Ga₅ (Tm₃Ga₅) і Y₃Ga₂ (Gd₃Ga₂) невідомий, але за даними праць [10, 12] ці фази виявлено за температури 600 °C. Повідомляють про існування двох поліморфних модифікацій сполуки Y₅Ga₃: з гексагональною структурою типу Mn₅Si₃ [7] і тетрагональною типу Ba₅Si₃ [13], проте температура поліморфного перетворення не визначена. Авторами праці [14] виявлено існування за температури вищої 1000 °C ще однієї поліморфної модифікації цієї сполуки, яка кристалізується у моноклінній структурі типу Sc₅Ga₃.

Узагальнена діаграма стану подвійної *системи Y-Sb* наведена у [8-9]. Система характеризується існуванням п'яти сполук: YSb (CT NaCl), Y₄Sb₃ (CT Th₃P₄), Y₅Sb₃ (CT Mn₅Si₃), YSb₂ (CT HoSb₂) i Y₃Sb (CT Ti₃P) [7]. Моноантимонід YSb плавиться конгруентно при 2310 °C, а сполуки Y₃Sb i Y₅Sb₃ утворюються перитектично при 1240 i 1690 °C, відповідно. У праці [15] повідомляють про фазовий перехід першого роду для сполуки YSb (зміна структури типу NaCl на CsCl), що відбувається за тиску 26 ГПа. Фаза Y₅Sb₃ має дві поліморфні модифікації, причому низькотемпературна має гексагональну структуру типу Mn₅Si₃, а високотемпературна – ромбічну типу β-Yb₅Sb₃ та існує за температури вище 1260 °C [16]. Сполука Y₄Sb₃ утворюється за перитектичною реакцією при 2120 °C, а при 1660 °C евтектоїдно розкладається на YSb та Y₅Sb₃. Антимонід YSb₂ стійкий лише за високих температур і високих тисків [7, 9], тому на діаграмі стану відсутній.

Згідно з діаграмою стану *системи Ga-Sb* [8-9] в ній утворюється лише одна бінарна сполука GaSb [7], яка залежно від умов синтезу кристалізується у різних структурних типах. За кімнатної температури й тиску 6-9 ГПа GaSb зазнає фазового перетворення у тетрагональну фазу β -GaSb (СТ β -Sn). Гексагональна фаза GaSb (СТ BiIn) утворюється за дуже високих тисків (27.8-70 ГПа).

Взаємної розчинності компонентів у описаних вище подвійних системах не спостерігали.

¹ Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія 6, 79005 Львів, Україна

Методика дослідження. Для вивчення фазових рівноваг у системі Y-Ga-Sb нами синтезовано 91 сплав. Для приготування зразків використовували компактні ітрій, галій та стибій, чистотою не менше 99,995 % мас. основного компонента. Суміш вихідних компонентів плавили в електродуговій печі з вольфрамовим електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону. Гомогенізуючий відпал проводили у вакуумованих кварцових ампулах у муфельних печах з автоматичним регулюванням температури при 500 °C не менше 1000 год з наступним гартуванням у холодній воді, не розбиваючи ампул.

Рентгенофазовий аналіз проводили шляхом порівняння рентгенограм досліджуваних зразків з відомими рентгенограмами бінарних сполук та чистих компонентів, а також з теоретично розрахованими рентгенограмами. Дифрактограми порошку одержували на порошкових дифрактометрах ДРОН-3М та HZG-4a (Cu K_{α} -випромінювання, кроковий режим зйомки, $\Delta 2 \theta = 0.05^{\circ}$, час сканування 10-20 с у кожній точці, інтервал поміру 10° < 2 θ < 100°), а також на Huber Image Plate Guinier camera G670 (Cu $K_{\alpha l}$ -випромінювання, інтервал поміру брегівських кутів 5° < 2 θ < 100°). Фазовий аналіз зразків за одержаними дифрактограмами здійснювали за допомогою програми WinXPOW [17], а обчислення, пов'язані з уточненням параметрів елементарних комірок ідентифікованих фаз, а також координат та теплових параметрів атомів у кристалічних структурах сполук проводили за допомогою комплексу програм для структурного аналізу CSD [18].

Мікроструктурне дослідження деяких сплавів проводили за допомогою скануючого електронного мікроскопа Philips XL 30. Підготовку зразків для проведення даного аналізу проводили механічним шліфуванням сплавів, поміщених в електропровідну полімерну матрицю (Polyfast/Bakelit), з кінцевим поліруванням суспензією технічних алмазів з розміром зерна 10-0.1 мкм.

Результати та обговорення. За результатами рентгенофазового та мікроструктурного аналізу 91 сплаву, в тому числі 11 двохкомпонентних, уперше побудовано ізотермічний переріз діаграми стану потрійної системи Y-Ga-Sb при 500 °C (рис.).

При 500 °С нами підтверджено існування усіх бінарних сполук, що наведені на рисунку, в тому числі й галідів Y₃Ga₅ й Y₃Ga₂, які були виявлені авторами праць [10, 12] при 600 °С та у литих зразках. Слід зазначити, що найбагатша галієм бінарна сполука YGa₆ [7] була ідентифікована лише у трикомпонентних зразках.

Сполука Y_4Sb_3 за температури дослідження не виявлена, що пояснюється обмеженим температурним інтервалом її існування (1660-2120 °C) [8-9], проте дифрактограми деяких литих зразків системи Y-Sb містили відбиття цієї фази. Оскільки бінарний антимонід YSb₂ існує лише за умови високих температур і тисків [7, 9], то при 500 °C цю сполуку ми не отримали. Високотемпературну модифікацію фази Y₅Sb₃ (СТ β -Yb₅Sb₃) виявили у литих зразках, а дифрактограми зразків відповідного складу, які були відпалені при 500 °C, успішно проіндексували у гексагональній сингонії, що засвідчило існування за умов дослідження низькотемпературної модифікації із структурою типу Mn₅Si₃. Обчислені значення параметрів комірок ідентифікованих бінарних сполук наведені у табл. 1 разом з літературними даними.

На розрізі 62.5 ат. % У нами виявлено утворення твердого розчину значної протяжності на основі бінарної фази Y_5Sb_3 із структурою типу Mn_5Si_3 . Дифрактограми зразків $Y_{62.5}Ga_7Sb_{30.5}$, $Y_{62.5}Ga_{12.5}Sb_{25}$, $Y_{62.5}Ga_{18}Sb_{19.5}$, $Y_{62.5}Ga_{25}Sb_{12.5}$ і $Y_{62.5}Ga_{30}Sb_{7.5}$ проіндексовано в гексагональній сингонії з параметрами елементарних комірок, наведеними у табл. 2.

Сполука	ПГ	СТ	Параметри комірки, нм			Tim no
			а	b	С	Jiii-pa
YGa ₆	P4/nbm	PuGa ₆	0.5947	—	0.7549	[7]
			0.5951(1)	—	0.7564(3)	*
YGa ₂	P6/mmm	AlB ₂	0.4198	—	0.4095	[7]
			0.4203(1)	—	0.4097(1)	*
Y ₃ Ga ₅	Pnma	Tm ₃ Ga ₅	1.143	0.9688	0.6091	[7]
			1.1419(2)	0.9651(2)	0.6095(1)	*
YGa	Стст	CrB	0.4302	1.086	0.4073	[7]
			0.4299(2)	1.0849(5)	0.4068(2)	*
Y ₃ Ga ₂	I4/mcm	Gd ₃ Ga ₂	1.162	—	1.486	[7]
			1.1602(2)	—	1.4833(4)	*
Y ₅ Ga ₃	P4/ncc	Ba ₅ Si ₃	0.76474	—	1.4147	[7]
			0.7649(1)	—	1.4150(2)	*
YSb	$Fm\overline{3}m$	NaCl	0.61645	—	—	[7]
			0.61653(3)	—	_	*
Y ₄ Sb ₃ **	I43 <i>d</i>	Th ₄ P ₃	0.9139	_	_	[7]
			0.9140(1)	_	_	*
Y ₅ Sb ₃	<i>P</i> 6 ₃ / <i>mcm</i>	Mn_5Si_3	0.89114	—	0.62960	[7]
			0.89097(1)	—	0.62983(2)	*
Y ₅ Sb ₃ **	Pnma	β-Yb₅Sb₃	1.1867	0.9225	0.8098	[16]
			1.1872(1)	0.92293(3)	0.8105(1)	*
Y ₃ Sb	$P4_2/n$	Ti ₃ P	1.2361	-	0.6180	[7]
			1.2362(1)	—	0.6181(2)	*
GaSb	$F\overline{4} 3m$	ZnS	0.60959	_	_	[7]
			0.60955(4)	_	_	*

Таблиця 1. Значення параметрів елементарних комірок ідентифікованих бінарних сполук систем Y-Ga, Y-Sb та Ga-Sb

* – результати нашої роботи;

** - ідентифіковано у литих зразках.

Характер розташування відбить на дифрактограмах та їхня інтенсивність засвідчили ізоструктурність цих фаз з бінарною сполукою Y_5Sb_3 (СТ Mn_5Si_3). Оскільки ефективний радіус атома стибію в інтерметалідах ($r_{Sb} = 0.141$ нм) досить близький до радіуса атома галію ($r_{Ga} = 0.135$ нм) [19], то зміна параметрів елементарних комірок у межах існування твердого розчину на основі сполуки Y_5Sb_3 була незначною (див. табл. 2). Тому ми провели уточнення координат атомів та коефіцієнтів заповнення кристалографічних позицій атомами Стибію та Галію у структурі типу Mn_5Si_3 для зразків з різним кількісним співвідношенням галію і стибію (табл. 2) та довели, що причиною утворення таких твердих розчинів є взаємне заміщення атомів Sb і Ga у позиції 6*l*.

Склад зразка	*G, %	а, нм	с, нм	c/a
Y ₅ Sb ₃	100% Sb	0.8846(3)	0.6336(2)	0.71630
$Y_5Ga_{0.56}Sb_{2.44}$	83(2)% Sb + 17(2)% Ga	0.88230(5)	0.63583(4)	0.72065
Y_5GaSb_2	70(2)% Sb + 30(2)% Ga	0.87514(6)	0.63888(5)	0.73000
$Y_5Ga_{1.44}Sb_{1.56}$	56(1)%Sb + 44(1)% Ga	0.87339(7)	0.64359(6)	0.73689
Y ₅ Ga ₂ Sb	43(1)% Sb + 57(1)% Ga	0.86896(9)	0.64951(7)	0.74750
$Y_5Ga_{2.40}Sb_{0.60}$	22(1)% Sb + 78(1)% Ga	0.86600(5)	0.65118(5)	0.75194

Таблиця 2. Кристалографічні дані для структури типу Mn₅Si₃ у зразках з вмістом Y 62.5 ат. %

*G, % – ступінь зайнятості кристалографічної позиції 61 атомами стибію та галію.

Слід зазначити, що бінарна сполука Y_5Ga_3 за умов нашого дослідження кристалізується у тетрагональній структурі типу Ba_5Si_3 , тому між сполуками Y_5Sb_3 і Y_5Ga_3 не утворюється неперервний ряд твердих розчинів із структурою типу Mn_5Si_3 . Проте додавання навіть незначних кількостей стибію (2-3 ат. %) до фази Y_5Ga_3 спричиняє утворення тернарної фази із СТ Mn_5Si_3 , що засвідчили результати аналізу дифрактограм сплавів у цій області, а також дані мікроструктурного дослідження. Таким чином, встановлено, що бінарна сполука Y_5Sb_3 розчиняє до 34-35 ат. % Ga.

Інші бінарні сполуки помітних кількостей третього компонента не розчиняють.

За температури дослідження нами синтезовано нову тернарну сполуку складу ~ Y_5GaSb_3 . Дифрактограму зразка складу $Y_{55}Ga_{15}Sb_{30}$ проіндексували у ромбічній сингонії з параметрами комірки a = 0.8015(3) Å, b = 1.5202 Å, c = 0.8028(1) Å. Характер розташування відбить на дифрактограмі вказував на можливу ізоструктурність нової сполуки з тернарною фазою Ho_5GaSb_3 [1]. Незначна зміна параметрів комірки сполуки ~ Y_5GaSb_3 , яку спостерігали для зразків різного складу, засвідчила існування невеликої області гомогенності у цієї фази (межі області гомогенності на рисунку наведено за результатами фазового аналізу). Детальне вивчення кристалічної структури нової сполуки буде предметом наступних досліджень.

Отже, нами вперше систематично вивчено взаємодію компонентів у потрійній системі Y-Ga-Sb і побудовано діаграму фазових рівноваг цієї системи при 500 °C. Варто зазначити, що хоча ітрій є перехідним металом, усе ж його властивості дуже подібні до властивостей рідкісноземельних елементів. З цієї точки зору доцільно порівняти особливості взаємодії компонентів у системі Y-Ga-Sb як з системами *R*-Ga-Sb (R – рідкісноземельний метал), так і з системами типу *M*-Ga-Sb (M – перехідний метал). Як і в раніше дослідженій системі з гольмієм [2], так і в системі Y-Ga-Sb не виявлено утворення великої кількості тернарних фаз, що пов'язано з невеликою різницею електронегативностей компонентів, які утворюють ці системи. На сьогодні найбільше тернарних сполук синтезовано у системі La-Ga-Sb [3-4], проте, на відміну від систем з ітрієм та гольмієм, вони утворюються у області з високим вмістом стибію. Те, що нова сполука ~Y₅GaSb₃ є ізоструктурною із тернарною фазою Ho₅GaSb₃ [1], вказує на близьку спорідненість системи Y-Ga-Sb з системами *R*-Ga-Sb, де R – рідкісноземельний метал ітрієвої підгрупи. Існування області гомогенності у сполуки ~Y₅GaSb₃, очевидно, зумовлене невеликою різницею атомних радіусів галію і стибію [19] та їхніми подібними кристалохімічними характеристиками.

Системи {Ti, Zr, Nb}-Ga-Sb характеризуються утворенням обмежених, а система Sc-Ga-Sb – неперервних твердих розчинів на основі бінарних сполук із структурою типу Mn₅Si₃ [7, 20]. Таким чином, існування у системі Y-Ga-Sb твердого розчину значної протяжності на основі

бінарного антимоніду Y_5Sb_3 із структурою типу Mn_5Si_3 засвідчує деяку спорідненість цієї системи з системами *M*-Ga-Sb, де *M* – перехідний метал III-IV груп.

Подяка. Частина експериментальних досліджень виконана на обладнанні Макс Планк Інституту фізичної хімії твердих тіл (м. Дрезден, Німеччина) за фінансової підтримки фонду DAAD та Max Planck Society.

- Antonyshyn I., Zhak O., Oryshchyn S., Babizhetskyy V., Hoch C., Aksel'rud L. Crystal structure of the new ternary antimonide Ho₅GaSb₃ // Z. Naturforsch. 2009. Vol. 64b. P. 909–914.
- Oryshchyn S.V., Zhak O.V., Midiana I.S., Babizhetskyy V.S., Akselrud L.G. New ternary phases in the Ho-Ga-Sb system and their crystal structures // Book of Abstr. of 15th Intern. Conf. on Solid Compounds of Transition Elements (SCTE2006) – Krakow (Poland), July 15-20, 2006. – P. 26.
- 3. Mills A.M., Mar A. Rare-earth gallium antimonides La₁₃Ga₈Sb₂₁ and *RE*₁₂Ga₄Sb₂₃ (*RE* = La-Nd, Sm): linking Sb ribbons by Ga₆-rings and Ga₂-pairs // *Inorg. Chem.* 2000. Vol. *39*. P. 4599–4607.
- 4. Mills A.M., Mar A. Layered rare-earth gallium antimonides *RE*GaSb₂ (*RE* = La-Nd, Sm) // *J. Am. Chem. Soc.* 2001. Vol. *123*. P. 1151–1158.
- 5. Bobev S., Fritsch V., Thompson J.D. et al. Synthesis, structure and properties of the new rare-earth Zintl phase Yb₁₁GaSb₉ // *J. Solid State Chem.* 2005. Vol. *178*. P. 1071–1079.
- 6. Park S.-M., Kim S.-J., Kanatzidis M.G. Eu₇Ga₆Sb₈: A Zintl phase with Ga–Ga bonds and polymeric gallium antimonide chains // *J. Solid State Chem.* 2004. Vol. 177. P. 2867–2874.
- 7. Villars P. Pearson's Handbook Desk Edition. Crystalographic Data for Intermetallic Phases. Metals Park: Am. Soc. Met., 1997. Vol. *1-2*. 2888 p.
- 8. Massalski T.B., Subramanian P.R., Okamoto H. et al. Binary Alloys Phase Diagrams. Ohio: ASM International, 1990. Vol. *1–2*. 2223 p.
- Диаграммы состояния двойных металлических систем / Под общ. ред. Н.П. Лякишева. М.: Машиностроение, 1996. Т. 2. 1024 с.
- 10. Yatsenko S.P., Hladyschewsky E.I., Tschuntonow K.A. et al. Kristallstruktur von Tm₃Ga₅ und analoger Verbindungen // J. Less-Common Met. 1983. Vol. 91. P. 21–32.
- Марків В.Я., Жунківська Т.Г., Бєлявіна Н.М. Рентгеноструктурне дослідження сплавів системи Y-Sc-Ga і P3M₂Ga₃ (P3M = Sc, Y, Tb, Dy, Ho, Er, Tm, Yb, Lu) // Доп. АН VPCP 1981. № 3. С. 84–86.
- 12. Yatsenko S.P., Hladyschewsky R.E., Sitschewitsch O.M. et al. Kristallstruktur von Gd₃Ga₂ und isotypen Verbindungen // J. Less-Common Met. 1986. Vol. 115. P. 17–22.
- 13. Zhao J.-T., Corbett J.D. R₅Ga₃ compounds of selected rare earth metals R: structures and properties // J. Alloys Compd. 1994. Vol. 210. P. 1–7.
- Maggard P.A., Corbett J.D. Formation of gallium dimers in the intermetallic compounds R₅Ga₃ (R = Sc, Y, Ho, Er, Tm, Lu). Deformation of the Mn₅Si₃-type structure // *Inorg. Chem.* 2001. Vol. 40. P. 1352–1357.
- 15. Hayashi J., Shirotani I., Hirano K. et al. Structural phase transition of ScSb and YSb with a NaCl-type structure at high pressures // *Solid State Commun*. 2003. Vol. *125*. P. 543–546.
- 16. Mozharivskyj Yu., Franzen H.F. High-temperature modification of Y₅Sb₃ and its ternary analogue Y₅Ni_xSb_{3-x} // J. Alloys Compd. 2001. Vol. 319. P. 100–107.
- 17. WinXPOW (version 2.08). STOE and Cie GmbH, Darmstadt, 2003.
- 18. Aksel'rud L.G., Grin Yu.N., Pecharsky V.K., Zavalij P.Yu. CSD97 Universal program package for single crystal and powder data treatment, Version N 7, 1997.
- 19. Wiberg N. Lehrbuch der Anorganischen Chemie. Walter de Gruyter, Berlin; New York, 1995. P. 1838–1840.
- Maggard P.A., Knight D.A., Corbett J.D. Substitutional chemistry in Mn₅Si₃-type scandium-main group compounds and the formation of quasibinary phases // J. Alloys Compd. 2001. Vol. 315. P. 108–117.

Поступила в редакцию 22 марта 2010 г.

И. С. Антонишин, С. В. Орищин, О. В. Жак. Диаграмма фазовых равновесий системы Y-Ga-Sb при 500 °C.

Методами рентгенофазового, рентгеноструктурного и микроструктурного анализов впервые исследовано взаимодействие компонентов в системе Y-Ga-Sb и построено изотермическое сечение диаграммы состояния при 500 °C. Обнаружено существование протяженного ряда твердых растворов на основе бинарного антимонида Y_5Sb_3 со структурой типа Mn_5Si_3 . Впервые синтезировано новое тройное соединение ~ Y_5GaSb_3 и выдвинуто предположение о его изоструктурности с соединением Ho_5GaSb_3 (сверхструктура к типу Sm_5Ge_4).

Ключевые слова: рентгеновский анализ, диаграмма фазовых равновесий, твердый раствор, интерметаллид, кристаллическая структура.

I. S. Antonyshyn, S. V. Oryshchyn, O. V. Zhak. Solid state phase equilibria in the Y-Ga-Sb system at 500 °C.

The interaction of components of the ternary Y-Ga-Sb system at 500 $^{\circ}$ C has been studied for the first time using X-ray phase, structural and microstructural analysis. The isothermal section of its phase diagram at 500 $^{\circ}$ C has been constructed. The existence of extended series of solid solutions based on the binary antimonide Y₅Sb₃ with Mn₅Si₃.type structure has been observed. A new ternary compound ~Y₅GaSb₃ has been synthesized and it's crystal structure is admittedly isostructural with the compound Ho₅GaSb₃ (superstructure of Sm₅Ge₄ type).

Key words: X-ray analysis, phase diagram, solid solution, intermetallic compound, crystal structure.

Kharkov University Bulletin. 2010. № 895. Chemical Series. Issue 18(41).