УДК 547.7/8

ПОИСК НОВЫХ ЛЮМИНОФОРОВ С ЗАДАННЫМИ ФИЗИКО-ХИМИЧЕСКИМИ И ХИМИЧЕСКИМИ СВОЙСТВАМИ. VII. 3-N-(R-САЛИЦИЛИДЕН)АМИНО-7-ГИДРОКСИКУМАРИНЫ И ИХ ПРОИЗВОДНЫЕ – 5*Н*-ХРОМЕНО-[3,4-*b*]ПИРИДИН-5-ОНЫ

© 2008 Шкумат А. П., Бережной А. Ю

Синтезированы 3-N-(R-салицилиден)амино-7-гидроксикумарины, замещенные 3-(2-гидроксифенил)-1-арил-*5H*-хромено[3,4-*b*]пиридин-5-оны и 8-гидрокси-3-(2-гидроксифенил)-1-фенил-*5H*-хромено[3,4-*b*]пиридин-5-оны, изучены их спектрально-люминесцентные свойства.

Ранее нами [1] был синтезирован и исследован систематический ряд 3-N-R-салицилиденаминокумаринов, для которых характерна интенсивная люминесценция только в твёрдом состоянии. С целью получения более эффективных люминофоров мы решили синтезировать 3-N-(R-салицилиден)амино-7-гидроксикумарины ввиду того, что большинство замещенных 7-гидроксикумаринов флуоресцируют как в растворах так и в твёрдом состоянии. Также представляло интерес преобразовать 3-N-(R-2-гидрокси-бензилиден)аминокумарины и 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумарины в соответствующие замещенные 5*H*-хромено-[3,4-*b*]пиридин-5-оны. Указанные азометины и их производные могут быть использованы как потенциальные комплексообразующие вещества, а также как многофункциональные соединения для дальнейших химических превращений.

3-N-(R-салицилиден)амино-7-гидроксикумарины были получены взаимодействием 3-ацетамидо-7-гидроксикумарина и замещенных салициловых альдегидов в изопропиловом спирте в присутствии каталитических количеств HCl (см. схему 1 и экспериментальную часть).

Схема 1. Синтез 3-N-(К-салицилиден)- /-гидроксиаминокумаринов R_1 = H- (Va), 4-HO- (Vb), 4-MeO- (Vc), 4-HO-5-*н*-C₆H₁₃- (Vd), 4-Et₂N- (Ve), 5-MeO- (Vf), 5-Br- (Vg), 5,6-бензо- (Vh).

В предыдущем сообщении [1] нами показано, что синтез 3-N-(R-2-гидроксибензилиден)аминокумаринов целесобразно проводить через стадию предварительного гидролиза 3-ацетамидокумарина. В настоящем сообщении мы исключили указанную стадию, вследствие протекания побочных процессов (осмоления и др.), и основания Шиффа (Va-h) получали взаимодействием 3-ацетамидо-7-гидроксикумарина (III) и соответствующих R-салициловых альдегидов (IVa-h). Степень превращения контролировали с помощью TCX микропроб реакционной среды. Подробные сведения об условиях синтеза приведены в экспериментальной части. Взаимодействие альдегидов (IVa-h) и 3-ацетамидо-7-гидроксикумарина процесс обратимый, поэтому для полного протекания прямой реакции целесообразно давать небольшой избыток R- салицилового альдегида (оптимально - 10%), минимальное количество растворителя и при перекристаллизации использовать безводные растворители (изо-пропанол или этанол).

Синтезированные соединения представляют собой кристаллические вещества, люминесцирующие в твердом состоянии и в растворах.

В ИК спектрах 3-N-(R-салицилиден)амино-7-гидроксикумаринов (см. табл. 1), как и следовало ожидать, в области 1600 – 1625 см⁻¹ присутствуют полосы, которые могут быть отнесены к поглощению азометинового фрагмента, структурированные полосы при 1705 –1765 см⁻¹, обусловленные поглощением C=O группы кумаринового цикла, и две полосы v_{OH} - одна в области 3325 –3400 см⁻¹, связанная, вероятно, с поглощением 7-гидроксигруппы кумаринового фрагмента, а для соединения Vb, кроме того, и 4-гидроксигруппы салицилового фрагмента и вторая - широкая полоса поглощения с максимумом в области 3050 – 3435 см⁻¹, обусловленная, в основном, поглощением 2-гидроксигруппы салицилового фрагмента, участвующей в образовании внутримолекулярной водородной связи с атомом азота C=N группы.

			Выход	ИК спектры, $\widetilde{\nu}$, см ⁻¹					
№ соед.	R ₁	Т _{пл.} , °С	после перекрис- таллизации, %	пе рис- ации, \widetilde{V}_{apom} , $\widetilde{V}_{C=N}$ $\widetilde{V}_{C=C}$		$\widetilde{ u}_{ m OH}$	$\widetilde{\mathcal{V}}_{ m OH}$ связ. BMBC		
Va	H-	242	54	1600	1702 1755	3320	3050		
Vb	4-HO-	262	55	1600	1722 1762	3325 3350	3045		
Vc	4-MeO-	222	78	1608	1708 1758	3343	3055		
Vd	4-HO-5- - <i>н</i> -С ₆ H ₁₃ -	256	58	1625	1715 1762	3343	3370		
Ve	4-Et ₂ N-	246	77	1615	1718 1762	3343	3335		
Vf	5-MeO-	229	86	1615	1722 1762	3343	3435		
Vg	5-Br-	236	60	1615	1722 1762	3343	3185		
Vh	5,6-бензо-	288	86	1610	1708	3323	3030		

Таблица 1. Основные физико-химические характеристики 3-N-(R-салицилиден)амино-7-гидроксикумаринов

Кроме того, для подтверждения строения целевых продуктов были измерены спектры ПМР (табл. 2).

Как видно из приведённых данных, для 3-N-(R-салицилиден)амино-7-гидроксикумаринов характерен сигнал Н_{азометин} протона в области 8.0-8.6 м.д. Также наблюдается ряд сигналов ароматических протонов в области 6.4 – 8,8 м.д. Гидроксильные группы проявляют сигнал в широкой области спектра: 9,19 – 9,77 м.д. для 7-ОН и 10,2 – 10,5 м.д. для гидроксильной группы салицилиденового фрагмента, участвующей во внутримолекулярном взаимодействии. Для веществ (Vc-f), имеющие алифатические протоны, наблюдается характерное поглощение в области 2,1 – 3,79 м.д.

Производные 3-N-(R-салицилиден)амино-7-гидроксикумаринов - 5*H*-хромено-[3,4-*b*]пиридин-5-оны (VIIa-f) получали аналогично синтезу бензо(h)хинолинов [3] в результате циклоконденсации эквимолярных количеств оснований Шиффа – 3-N-(R-салицилиден)амино-7гидроксикумаринов (Va-h) с ацетофеноном и 2-гидрокси-5-хлорацетофеноном в спиртовой среде в присутствии каталитических количеств соляной кислоты (см. схему 2, экспериментальную часть). Эффективность превращения контролировали с помощью TCX микропроб реакционной среды. Выделенные целевые продукты очищали перекристаллизацией из органических растворителей (спирты: этиловый, изопропиловый). Выход чистого продукта составлял не менее 55%. Таблица 2. Спектры ПМР 3-N-(R-салицилиден)амино-7-гидроксикумаринов

\land	H ⁰ ∕ ∕N∕	
	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	~ (R ₁

HOOOO												
N⁰			Спектры ПМР, б, м.д.									
соед.	R ₁	H _{7-OH}	Назометин	Н _{ОН-Салицил}	H(∑аром + H₄)							
Va	H-	9,20 (1H, s)	8,60 (1H, s)	10,25 (1H, s)	7,8 – 7,1 (8Н, м)							
Vb	4-HO-	9,75 (1H, s)	8,48 (1H, s)	10,34 (1H, s)	8,7 <i>-</i> 6,8 (7Н, м)							
Vc	4-MeO-	9,75(1H, s)	8,60 (1H, s)	10,42 (1H, s)	8,0-6,4 (7H, м)							
Vd	4-HO-5- - <i>н</i> -С ₆ H ₁₃ -	9,77 (1H, s)	8,61 (1H s,)	10,51 (1H, s)	8,8-6,8 (6Н, м)							
Ve	$4-Et_2N-$	9,75 (1H s,)	8,00(1H, s)	-	7,7 – 7,1 (7Н, м)							
Vf	5-MeO-	9,76 (1H, s)	8,60 (1H s,)	10,35 (1H, s)	7,8-6,7 (7Н, м)							
Vg	5-Br-	9,19 (1H, s)	8,60 (1H, s)	10,35 (1H, s)	7,8-6,7 (7Н, м)							
Vh	5650000	0.65(111 c)	9.45(111 c)	10.5(111 c)	70 + 67 (10 II s)							

Производные 3-N-(R-2-гидроксибензилиден)аминокумаринов и 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумаринов – замещенные 5*H*-хромено-[3,4-*b*]пиридин-5-оны (VIIa-f) представляют собой высокоплавкие труднорастворимые кристаллические вещества, люминесцирующие в растворах и твёрдом состоянии.

Схема 2. Синтез 8-R₂-3-(2-гидрокси-R₁-фенил)-1-(R₃-фенил)-*5H*-хромено[3,4-*b*]-пиридин-5-онов R₁= H-; 4-HO-; 4-MeO-; 4-Et₂N-; R₂= H-; HO-; R₃= H-; 2-HO-5-Cl-

В ИК спектрах синтезированных продуктов (см. табл. 3) в области 1618 – 1628 см⁻¹ присутствуют полосы, которые отнесены нами к поглощению C=N пиридинового фрагмента ($\tilde{V}_{C=N}$), что согласуется с литературными данными [2], структурированные (вследствие влияния межмолекулярного взаимодействия в кристаллах) полосы при 1684 – 1736 см⁻¹ могут быть интерпретированы как поглощение C=O группы кумаринового фрагмента[2]. В области 3152 – 3432 см⁻¹ присутствуют полосы, обусловленные поглощением гидроксильных групп. Вещества, содержащие более одной гидроксильной группы, имеют в этой области несколько полос поглощения (VIId), причём, более низкочастотная полоса обычно значительно уширена. Эту полосу можно интерпретировать, как полосу поглощения гидроксильной группы, связанной внутримолекулярной водородной связью с атомом азота C=N группы пиридинового фрагмента. Измерение спектров ПМР для подтверждения строения целевых продуктов оказалось возможным только на качественном уровне из-за низкой растворимости соединений. Можно утверждать, что в спектрах этих соединений наблюдаются сигналы ароматических протонов в области 8 – 6 м.д., гидроксильных групп около 10,8 м.д. и 8,2 – 8,4 м.д. протона пиридинового фрагмента.

Электронные спектры поглощения и спектры люминесценции, синтезированных азометинов изучены для ацетонитрильных растворах (см. табл. 4).

Как видно из данных таблицы 4, спектры поглощения ацетонитрильных растворов азометинов (Va-h) характеризуются длинноволновой полосой поглощения в области 30060 – 30820 см⁻¹, на положение которой практически не влияют заместители, находящихся в салицилиденовой составляющей. В отличие от ранее синтезированных 3-N-(R-2-гидроксибензилиден)аминокумаринов [1] полосы поглощения сдвинуты гипсохромно. Синтезированные соединения интенсивно люминесцируют с \tilde{V}_{MAKC} в области 24580 – 25460 см⁻¹ с квантовым выходом 0,43 – 0,98 (эталон - хинин сульфат). Как видно из приведенных значений квантовых выходов, введение любых заместителей приводит к снижению квантового выхода флуоресценции, т.е. к увеличению потери энергии в возбужденном состоянии.

Таблица 3. Основные физико-химические характеристики 8-R₂-3-(2-гидрокси-R₁-фенил)-1-(R₃-фенил)-5*H*-хромено[3,4-*b*]пиридин-5-онов

				N2	0 0	<i>,</i>				
№ соед.	R ₁	R ₂	D	Т _{пл.} , °С	Выход (%)	Анализ на азот, %		ИК спектры, $\widetilde{\mathcal{V}}$, см ⁻¹		
			R3			Экспе- римент. найдено	Вычис- лено	C=N	C=O	ОН
VIIa	H-	H-	H-	268	65	3,81	3,85	1618	1736	3152
VIIb	H-	H-	2-HO- 5-Cl-	288	70	3,40	3,37	1618	1700 1736	3156
VIIc	H-	HO-	H-	270	65	3,71	3,67	1624	1684	3128 3220
VIId	4-HO-	HO-	H-	282	68	3,48	3,52	1628	1684 1700	3352 3432
VIIe	4-MeO-	НО-	H-	272	57	3,44	3,40	1624	1684 1700	3312 3390
VIIf	4-Et ₂ O-	HO-	H-	274	76	3,27	3,29	1628	1684	3224 3348

Таблица 4. Спектрально-люминесцентные свойства 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумаринов

№ соед.	R ₁	УФ спектры (ацетонитрил)		Спектры люминесцен- ции (ацетонитрил)		Стокс. сдвиг,	Квант.	Расчёт $S_0 \rightarrow S_1,$ $\lambda_{макс},$ нм Аb	
		λ _{макс,} НМ	\widetilde{v}_{MAKC} , cm ⁻¹	$\lambda_{{}_{Makc}}$ нм	<i>V_{MAKC}</i> , см ⁻¹	CM^{-1}	ылод	ZINDO/s	Initio (базис 3-21G)
Va	H-	324	29900	406	24600	5300	0,98	320	322
Vb	4-HO-	332	30080	407	24600	5480	0,94	327	330
Vc	4-MeO-	332	30080	404	24700	5380	0,74	328	329
Vd	4-НО-5- <i>н</i> - -С ₆ Н ₁₃ -	331	30140	398	25100	5040	0,70	323	327
Ve	$4-Et_2N-$	324	30780	391	25420	5360	0,59	321	322
Vf	5-MeO-	326	30600	397	25180	5420	0,43	318	320
Vg	5-Br-	325	30740	392	25460	5280	0,64	_	325
Vh	5,6-бензо-	332	30060	406	24580	5480	0,59	330	333

Электронные спектры поглощения и спектры люминесценции продуктов (VIIa-f) также изучены в ацетонитрильных растворах (см. табл. 5, рис. 1). Для указанных соединений наблюдается длинноволновая полоса поглощения в области 28940-30380 см⁻¹, которая обусловлена возбуждением π-электронной системы 5*H*-хромено-[3,4-*b*]-пиридин-5-онового фрагмента. Эта структурированная полоса находится под влиянием заместителей, содержащихся в фенилах. Следует отметить, что в отличие от ранее синтезированных 3-N-(R-2-гидрокси-бензилиден)аминокумаринов [1] и 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумаринов полосы поглощения этих соединений (VIIa-f) сдвинуты гипсохромно.

Синтезированные соединения (VIIa-f) в основном интенсивно люминесцируют с $\tilde{\nu}_{MAKC}$ в области 25000 – 27100 см⁻¹. Характерный вид кривых спектров поглощения и люминесценции приведены на рисунке 1.

Рисунок 1. Спектр поглощения и люминесценции 8-гидрокси-3-(2-гидроксифенил)-1-фенил-*5H*-хромено[3,4-*b*]пиридин-5-она (соед. VIIс)

Следует отметить, что только 7-гидроксизамещённые (VIIc-f), как и их предшественники 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумарины (Va-h) оказываются эффективны в излучательном процессе.

Для более полного осмысления и понимания спектрально-люминесцентных данных проведены теоретические расчёты соединений (Va-h, VIIa-f) с помощью методов AM1, ZINDO/s и также неэмпирического Ab Initio в базисе 3-21G. В ходе расчета методом AM1 было выявлено, что образование внутримолекулярной водородной связи для указанных соединений энергетически выгодно. Экспериментально следствие внутримолекулярного взаимодействия гидроксильной группы салицилиденового фрагмента с атомами азота азометинов Va-h и *5H*хромено[3,4-*b*]пиридин-5-она VIIa-f регистрируется в ИК спектрах (табл. 1 и 3) – в области 3030 – 3435 см⁻¹наблюдается широкая полоса поглощения ОН группы. Расчёт показывает, что благодаря внутримолекулярной водородной связи основная часть молекулы планарная и только фенил (или арил) в 1-м положении 5*H*-хромено[3,4-*b*]-пиридин-5-онового гетероцикла выведен из плоскости молекулы.

Проведенные расчеты с использованием полуэмпирического метода ZINDO/s и неэмпирического Ab Initio (базис 3-21G) позволяют проанализировать данные электронных спектров поглощения (данные расчётов представлены в таблице 4 и 5). Как видно из результатов квантовохимических расчётов электронных спектров поглощения, неэмпирический метод Ab Initio (базис 3-21G) дает лучшее согласование с экспериментальными спектральными данными, чем полуэмпирический метод ZINDO/s. Вероятно, из-за формальной близости основных хромофорных систем (см. рис. 2), в расчёте наблюдаются достаточно близкие значения положения длинноволновых переходов для 7-гидрокси-3-N-(R-2-гидрокси-бензилиден)аминокумаринов и замещенных 8-гидрокси-5*H*-хромено[3,4-*b*]пиридин-5-онов – они находятся в довольно узком интервале 324 - 345 нм и согласуются с экспериментальными данными $\lambda_{\text{макс}}$ полос поглощения.

Таким образом полученные нами замещенные 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумарины и 8-R₂-3-(2-гидрокси-R₁-фенил)-1-(R₃-фенил)-5*H*-хромено[3,4-*b*]пиридин-5-оны – кристаллические вещества, люминесцирующие в твердом состоянии и в растворах, которые могут быть использованы как люминофоры в различных сферах их применения, в частности, по формальным признакам, как потенциальные комплексообразующие вещества в люминесцентном анализе металлов, а также как многофункциональные соединения для дальнейших химических превращений в последующих наших исследованиях. Вместе с тем следует отметить, что использование 8-R₂-3-(2-гидрокси-R₁-фенил)-1-(R₃-фенил)-*5H*-хромено[3,4-*b*]-пиридин-5-онов может быть ограничено из-за их низкой растворимости.

№ соед.	УФ спектры (ацетонитрил)		Спектры люминесценции (ацетонитрил)		Стокс. сдвиг, Дёмакс.	Квант. выхол	Расчёт S ₀ \rightarrow S ₁ , $\lambda_{\text{макс}}$, нм		
								Ab Initio	
	$\lambda_{{}_{Makc},} \ {}_{HM}$	$\widetilde{\mathcal{V}}_{MAKC}$, cm ⁻¹	λ _{макс} , ΗΜ	\widetilde{v}_{MAKC} , cm ⁻¹	CM ⁻¹		ZINDO/s	(базис 3- 21G)	
VIIa	340	29400	369	27100	4860	0,03	327	332	
VIIb	336	29700	370	26980	3880	0,15	-	330	
VIIc	335	29840	399	25000	4160	0,67	334	338	
VIId	329	30380	391	25520	4160	0,74	321	327	
VIIe	345	28940	389	25060	4160	0,73	337	339	
VIIf	335	29800	390	25640	4160	0,78	321	339	

Таблица 5. Спектрально-люминесцентные свойства замещенных 5*H*-хромено-[3,4-*b*]пиридин-5-онов

Рисунок 2. Основные хромофорные системы 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумаринов и замещенных 8-гидрокси-*5H*-хромено[3,4-*b*]пиридин-5-онов.

Экспериментальная часть.

Инфракрасные спектры поглощения 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумаринов и замещенных 5*H*-хромено-[3,4-*b*]-пиридинов (в таблетках KBr) измеряли на спектрометре IR-75. Спектры ПМР изучены в растворе ДМСО-d₆ на спектрометре Varian Mercury VX-200. Электронные спектры поглощения измеряли в растворе ацетонитрила на спектрофотометре "Hitachi-3210", спектры флуоресценции на спектрофотометре "Hitachi-4010" (длина волны возбуждения выбирались в максимуме полосы поглощения изучаемого соединения, стандарт при измерении квантовых выходов – хинин сульфат в 0,1 н растворе H₂SO₄).

3-Ацетамидо-7-гидроксикумарин (III) получали исходя из 2,4-диоксибензальдегида (I) и ацетиламиноуксусной кислоты (II): смесь 61.1 г (0.5 моля) 2,4-диоксибензальдегида (I), 58.6 г (0.5 моля) ацетилглицина (II), 41 г (0.5 моля) безводного ацетата натрия, 104 мл ледяной уксусной кислоты и 250мл (2.5 моля) уксусного ангидрида помещали в литровую круглодонную двугорлую колбу, снабженную обратным холодильником и термометром, и быстро нагревали до 100°С на воздушной бане (см. схему 1). Нагрев продолжали в течении 2-х часов. Тёмнокрасный раствор охлаждали до комнатной температуры. Образовавшуюся при охлаждении кристаллическую массу измельчали и переносили при перемешивании в стакан со смесью 300г льда и 300мл воды. Выпавший жёлтый осадок отфильтровывали, промывали дважды порциями по 60мл 40%–ной уксусной кислоты; дважды (по 60мл) ледяной водой и сушили на воздухе. Выход 7-гидрокси-3-ацетамидокумарина 45.5г (40% от теоретического). Отчищали перекристаллизацией из 65%-ного этанола небольшими порциями по ~10 г (вещество плохо растворимо в этаноле) или в *изо*-бутаноле (вещество лучше растворяется и хорошо выкристаллизовывается в виде длинных игл желтоватого цвета с $t_{nл} = 231$ °С).

Общая методика получения азометинов (Va-h): реакционную смесь, состоящую из 4,5 ммоль 7-гидрокси-3-ацетамидокумарина (III), 5 ммоль соответствующего R-салицилового альдегида (IVa-h), минимального количества изо-пропанола (до 20 мл) и каталитических количеств HCI (конц.), нагревали с обратным холодильником в течении 0,8 – 1 часа (см. схему 1). Реакционную смесь после охлаждения нейтрализовывали содовым раствором. Полученный продукт отфильтровывали и перекристаллизовывали из изо-пропанола. Выход целевых продуктов – 54-86 % (см. табл. 1).

Общая методика получения R-5H-хромено-[3,4-b]пиридинов (VIIa-f): раствор эквимолярных количеств 7-гидрокси-3-N-(R-2-гидроксибензилиден)аминокумарина (III), R-ацетофенона (VIa-b) и 0,5 мл HCl (конц.) в изо-пропаноле кипятили в круглодонной колбе, снабженной обратным холодильником, в течение 2 часов (см. схему 2). После охлаждения раствор нейтрализовывали насыщенным раствором соды (до рН 6-8). Осадок фильтровали, сушили на воздухе и перекристаллизовывали из изо-пропанола. Выход – 65-76 % (см. табл. 3).

Индивидуальность синтезированных соединений подтверждена тонкослойной хроматографией на пластинках "Silufol UV-254" и "Silufol"(элюент – CHCl₃). Содержание азота в полученных продуктах устанавливали по методу Дюма.

Квантово-химические расчеты проводились с использованием пакета программ «Нурег Chem Pro 7.01» со стандартной параметризацией.

Литература

- 1. Шкумат А. П., Бережной А. Ю. Вестник Харьковского университета, 2002, № 573, Химия. Вып 9(32). - с. 78 – 84.
- 2. Катрицкий А. П., Эмдлер А. П. Физические методы в химии гетероциклических соединений./ Под ред. А. Р. Катрицкого -М.-Л.: Химия, 1966.- С. 554 555.
- 3. Летунов В. И., Тхор Т. Г. ЖОХ, 1984, Т. ХХ, Вып. 1.- С. 166 169.
- 4. Trivedi K.N., Sethna S. J.Org. Chem., 1960, V. 25, P. 1817.
- 5. Shaw K. N., Millan A. V., Armstrong V.D. J. Org. Chem., 1956, V. 21, P. 601.
- 6. Reppel L., Schmollack W. Arch. Pharmazie, 1963, N 6, P. 365.
- 7. Chakravarty D., Dutta S.R., Mitra A.K.- Current. Sci., 1965, V. 34, N6, P. 177.
- 8. Минбаев Б.У. Шиффовы основания. Алма-Ата: Наука. 1989.140 с.
- 9. Минбаев Б.У., Яшнова И.И. Физико-химические свойства шиффовых оснований.-Алма-Ата: Наука. 1990. 232 с.
- 10. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. Л.: Химия. 1984. 336 с.

Поступила в редакцию 17 июня 2008 г.

Kharkov University Bulletin. 2008. № 820. Chemical Series. Issue 16(39). Shkumat A. P., Berezhnoy A. Y. The search of new luminophores with predetermined physicochemical and chemical properties. VII. 3-N-(R-salicylidene)-7-hydroxyaminocoumarins and 5H-hromeno-[3,4-b]piridine-5-ones.

The series of 3-N-(R-salicylidene)-7-hydroxyaminocoumarines, substituted 3-(2-hydroxyphenyl)-1-aryl-5*H*-chromeno-[3,4-*b*]-piridine-5-ones and 8-hydroxy-3-(2-hydroxyphenyl)-1-phenyl-5*H*-chromeno-[3,4-*b*]-piridine-5-ones have been synthesized and examined. The data of the absorption and luminescence spectra are discussed.