УДК 541.8

РАВНОВЕСНЫЙ ВЫХОД КОРОНАТОВ В ВОДНО-МЕТАНОЛЬНЫХ И ВОДНО-ПРОПАН-2-ОЛЬНЫХ РАСТВОРИТЕЛЯХ И ЭФФЕКТЫ СРЕДЫ

© 2008 Ларина О. В., Бондарев Н. В., Керн А. П.

Краун-эфиры широко применяются в качестве модельных соединений природных комплексообразователей благодаря сходству строения и способности связывать различные катионы [1-3]. Биологическая [4,5], ионофорная [6,7] и физиологическая [8,9] активность, проявляемая краун-эфирными комплексами (коронатами), существенно зависят как от их равновесной концентрации (дозы), так и от свойств среды. Поэтому одной из актуальных задач теории химических равновесий является прогнозирование равновесного выхода коронатов на основе первичных (сольватационных), концентрационных и солевых эффектов среды [10-12]. Сольватация изменяет скорость, а часто и направление и механизм химической реакции, влияет на выход продуктов и является эффективным способом управления реакцией [13-15]. В то же время для определения состава равновесного раствора необходимо располагать данными о концентрационных константах химического равновесия. В научной и справочной литературе, как правило, приводятся термодинамические константы либо константы равновесий при заданной ионной силе раствора. Вследствие этого численное значение концентрационной константы химического равновесия в широком интервале концентраций зависит от способа описания концентрационной зависимости коэффициентов активности реагентов и сопутствующих равновесий, в частности, ионной ассоциации.

Целью работы является прогнозирование равновесного выхода коронатов натрия (18-краун-6)NaCl и калия (18-краун-6)KCl в водно-метанольных (MeOH) и водно-пропан-2-ольных (PrOH-2) растворах и количественная интерпретации влияния первичных эффектов среды, равновесных концентраций реагентов (концентрационных эффектов) и коэффициентов активности солей (первичных солевых эффектов) на концентрационную константу устойчивости коронатов.

Методологическая часть

Для реакции комплексообразования между солью (MA) и краун-эфиром (L)

$$MA + L = MLA$$
(1)

$$m_{MA}^{o} m_{L}^{o}$$

$$m_{MA}^{o} - [MLA] m_{L}^{o} - [MLA]$$
[MLA]

концентрационная константа образования монокоронатов K'_{MLA} связана со степенью превращения соотношением [16]

$$K'_{\rm MLA} = \frac{[\rm MLA]}{[\rm MA][L]} = \frac{\alpha_{\rm L}\alpha_{\rm MA}}{(1 - \alpha_{\rm MA})(1 - \alpha_{\rm L})[\rm MLA]} = \frac{\alpha_{\rm MA}}{(1 - \alpha_{\rm MA})(1 - \alpha_{\rm L})m_{\rm L}^{\rm o}} = \frac{\alpha_{\rm L}}{(1 - \alpha_{\rm MA})(1 - \alpha_{\rm L})m_{\rm MA}^{\rm o}}$$
(2)

где m° – начальная моляльная концентрация реагента, моль/(кг растворителя); [MLA], [MA], [L] – равновесные концентрации продукта комплексообразования и исходных веществ (реагентов); $\alpha_{\rm L} = [{\rm MLA}]/m_{\rm L}^{\circ}$, $\alpha_{\rm MA} = [{\rm MLA}]/m_{\rm MA}^{\circ}$ – доли исходных реагентов (MA или L), претерпевших превращение, или степень превращения.

Равновесный выход короната (MLA) определяется молярной долей этого вещества в равновесном состоянии системы (1) [11,17]:

$$X_{\rm MLA} = \frac{[\rm MLA]}{[\rm MA] + [L] + [\rm MLA]} = \frac{1}{\frac{1}{\alpha_{\rm ML}} + \frac{1}{\alpha_{\rm L}} - 1}$$
(3)

В основу моделирования [10-12] равновесного выхода коронатов положены экспериментальные данные по термодинамическим константам устойчивости монокоронатов в водноорганических растворителях, полученные нами ранее [18-22], и следующие положения: в воде и водно-спиртовых растворителях образуются коронаты натрия и калия стехиометрии 1:1 [22]; процесс комплексообразования катионов с краун-эфиром не осложнен ионной ассоциацией солей; в водно-органических растворителях сохраняется первичная гидратная оболочка ионов электролита. Подтверждением этому являются экспериментальные работы по исследованию зависимости химических сдвигов ¹Н воды, растворимости солей и сдвигов в электронных спектрах поглощения от концентрации (сравнительно низкой) воды в водно-органических растворителях и расчеты *ab initio* методом МО-ССП, обзор которых приведен в [23]; концентрационная зависимость средних ионных коэффициентов активности электролитов описывается уравнением Стокса-Робинсона [23,24].

Уравнение связи между термодинамической (K) и концентрационной константой (K') равновесия комплексообразования хлоридов натрия и калия с эфиром 18-краун-6 имеют вид [10,11]:

– для реакции в воде (w)

$$K_{\rm MLCl}^{\rm w} = \frac{a_{\rm LMCl}^{\rm w}}{a_{\rm MCl}^{\rm w} a_{\rm L}^{\rm w}} = \frac{a_{\pm \rm LMCl}^{2,\rm w}}{a_{\pm \rm MCl}^{2,\rm w} a_{\rm L}^{\rm w}} = \frac{[\rm LMCl]^{2,\rm w} \gamma_{\pm \rm LMCl}^{2,\rm w}}{[\rm MCl]^{2,\rm w} \gamma_{\pm \rm MCl}^{2,\rm w} [\rm L] \gamma_{\rm L}^{\rm w}} = K_{\rm MLCl}^{\prime \rm w} \frac{[\rm LMCl]^{\rm w} \gamma_{\pm \rm LMCl}^{2,\rm w}}{[\rm MCl]^{\rm w} \gamma_{\pm \rm MCl}^{2,\rm w} \gamma_{\rm L}^{\rm w}}$$
(4)

$$K_{\rm MLCl}^{\prime\rm w} = K_{\rm MLCl}^{\rm w} \frac{[{\rm MCl}]^{\rm w} \gamma_{\pm {\rm MCl}}^{2,{\rm w}} \gamma_{\rm L}^{\rm w}}{[{\rm LMCl}]^{\rm w} \gamma_{\pm {\rm LMCl}}^{2,{\rm w}}}$$
(5)

- для реакции в неводном (смешанном) растворителе (sw)

$$K_{\text{MLCl}}^{\prime\text{sw}} = K_{\text{MLCl}}^{\text{sw}} \frac{\left[\text{MCl}\right]^{\text{sw}} \gamma_{\pm\text{MCl}}^{2,\text{sw}} \gamma_{\text{L}}^{\text{sw}}}{\left[\text{LMCl}\right]^{\text{sw}} \gamma_{\pm\text{LMCl}}^{2,\text{sw}}}$$
(6)

При замене воды на неводный (смешанный) растворитель [10,11]

am

$$RT \ln \frac{K_{\text{MLCl}}^{\prime SW}}{K_{\text{MLCl}}^{\prime W}} = \left(\Delta_{tr} G_{\text{MCl}}^{\text{o}} + \Delta_{tr} G_{\text{L}}^{\text{o}} - \Delta_{tr} G_{\text{MLCl}}^{\text{o}}\right) + RT \left(\ln \frac{[\text{MCl}]^{SW}}{[\text{MCl}]^{W}} - \ln \frac{[\text{MLCl}]^{SW}}{[\text{MLCl}]^{W}}\right) + 2RT \left(\ln \frac{\gamma_{\pm \text{MCl}}^{SW}}{\gamma_{\pm \text{MCl}}^{W}} - \ln \frac{\gamma_{\pm \text{MLCl}}^{SW}}{\gamma_{\pm \text{MLCl}}^{W}} + \frac{1}{2} \ln \frac{\gamma_{\text{L}}^{SW}}{\gamma_{\text{L}}^{W}}\right)$$

$$(7)$$

Взаимосвязь стандартных термодинамических характеристик комплексообразования и переноса реагентов в системах краун-эфир – соль – вода – спирт вытекает из термодинамического цикла, записанного для реакции образования комплексов MLA в воде (*W*) и смешанном водно-органическом (*SW*) растворителе [19]

- 0 W

$$\Delta_r G^{\rm o} = \Delta_r G^{{\rm o},SW} - \Delta_r G^{{\rm o},W} = \Delta_{tr} G^{\rm o}_{\rm MLA} - (\Delta_{tr} G^{\rm o}_{\rm MA} + \Delta_{tr} G^{\rm o}_{\rm L})$$

или

$$RT \ln \frac{K_{\rm MLA}^{SW}}{K_{\rm MLA}^{W}} = \Delta_{tr} G_{\rm MA}^{\rm o} + \Delta_{tr} G_{\rm L}^{\rm o} - \Delta_{tr} G_{\rm MLA}^{\rm o} \,. \tag{8}$$

Расчетная часть

Расчеты равновесного выхода коронатов натрия и калия в водно-спиртовых растворителях (0, 0.2, 0.4, 0.6, 0.8 масс. доли спирта) проведены для интервалов концентрации солей от 0.1 до 2.1 моль/(кг растворителя) и краун-эфира – от 0.1 до 0.7 моль/(кг растворителя). Концентрации варьировали от трехкратного превышения начальной концентрации соли над концентрацией краун-эфира до пятикратного избытка концентрации лиганда над концентрацией соли. Выбор составов водно-органических растворителей и интервала концентрации солей обусловлен рас-

творимостью солей: в воде $m_{\text{NaCl}} = 6.15$, $m_{\text{KCl}} = 4.70$ моль/(кг растворителя); в метаноле $m_{\text{NaCl}} = 0.24$, $m_{\text{KCl}} = 0.07$ моль/(кг растворителя) [25].

Степень связывания хлоридов натрия и калия эфиром 18-краун-6. Термодинамическая константа равновесия (MCl + L = LMCl) комплексообразования солей натрия и калия с краунэфиром (L = 18C6) в растворах равна [10,26]

$$K_{\text{MLCl}} = \frac{a_{\text{LMCl}}}{a_{\text{MCl}}a_{\text{L}}} = \frac{a_{\pm\text{LMCl}}^2}{a_{\pm\text{MCl}}^2a_{\text{L}}} = \frac{[\text{LMCl}]}{[\text{MCl}][\text{L}]} \frac{\gamma_{\text{LMCl}}}{\gamma_{\text{MCl}}\gamma_{\text{L}}} = \frac{[\text{LMCl}]^2\gamma_{\pm\text{LMCl}}^2}{[\text{MCl}]^2\gamma_{\pm\text{MCl}}^2[\text{L}]\gamma_{\text{L}}},$$
(9)

где $M \equiv Na^+$ или K^+ .

Из условия материального баланса следует

$$m_{\text{MCl}}^{\text{o}} = [\text{MCl}] + [\text{LMCl}]_{;} m_{\text{L}}^{\text{o}} = [\text{L}] + [\text{LMCl}]$$
$$[\text{LMCl}] = \alpha_{\text{MCl}} m_{\text{MCl}}^{\text{o}}; [\text{MCl}] = (1 - \alpha_{\text{MCl}}) m_{\text{MCl}}^{\text{o}}; [\text{L}] = m_{\text{L}}^{\text{o}} - [\text{LMCl}] = m_{\text{L}}^{\text{o}} - \alpha_{\text{MCl}} m_{\text{MCl}}^{\text{o}}.$$

Тогда для концентрационной константы комплексообразования К'_{MLA} можно записать

$$K'_{\rm MLCl} = K_{\rm MLCl} \frac{\gamma_{\rm MCl} \gamma_{\rm L}}{\gamma_{\rm LMCl}} = \frac{\alpha_{\rm MCl}}{(1 - \alpha_{\rm MCl})(m_{\rm L}^{\rm o} - \alpha_{\rm MCl} m_{\rm MCl}^{\rm o})},$$
(10)

где $\gamma_{MCl} = [MCl] \times \gamma_{\pm MCl}^2$, $\gamma_{LMCl} = [LMCl] \times \gamma_{\pm LMCl}^2$ [27] – концентрационные коэффициенты активности электролита как растворенного вещества (без учета диссоциации); γ_{\pm} – средний ионный коэффициент активности электролита; γ_L – концентрационный коэффициент активности сти краун-эфира; α_{MCl} – степень комплексообразования (степень связывания соли).

Таким образом,

$$m_{\rm MCl}^{\rm o} \alpha_{\rm MCl}^2 - \left(m_{\rm MCl}^{\rm o} + m_{\rm L}^{\rm o} + \frac{1}{K_{\rm MLCl}'} \right) \alpha_{\rm MCl}^2 + m_{\rm L}^{\rm o} = 0$$
(11)

Откуда

$$\alpha_{\rm MCl} = \frac{p}{2} \pm \sqrt{\frac{p^2}{4}} - q , \quad \text{где } p = \left[1 + \frac{1}{m_{\rm MCl}^{\rm o}} \left(m_{\rm L}^{\rm o} + \frac{1}{K_{\rm MLCl}'} \right) \right]; \quad q = \frac{m_{\rm L}^{\rm o}}{m_{\rm MCl}^{\rm o}}.$$

Расчет степени связывания реагентов проведен методом итераций. В качестве начального приближения K'_{MLCl} использованы термодинамические константы устойчивости коронатов натрия и калия в водно-метанольных [18,19] и водно-пропан-2-ольных [20-22] растворителях.

Оценка средних ионных коэффициентов активности электролитов и коэффициентов активности краун-эфира. Описание концентрационной зависимости коэффициентов активности γ_+ электролитов проведено по уравнению Стокса и Робинсона [23,24]

$$\lg \gamma_{\pm}^{(m)} = -\frac{|z_{\pm}z_{-}| A\sqrt{I}}{1 + aB\sqrt{I}} - \frac{h}{\nu} \lg a_{s} - \lg \left[\left(1 + M_{o} 10^{-3} (\nu - h) m \right) \right]$$
(12)

Величины чисел гидратации *h* и параметра наибольшего сближения ионов *a* для электролитов NaCl и KCl взяты из [28]. Активность растворителя *a*_s в растворах электролитов принималась равной активности воды. Параметр наибольшего сближения ионов для хлоридов коронатов натрия (*a* = 6.685 Å) и калия *a* = 7.05 Å оценен в предположении, что ионы LM⁺ и Cl⁻ в растворе разделены одной молекулой воды (*a* = $r_{M^+} + d_{H_2O} + r_{Cl^-}$). Эффективный радиус молекулы воды 1.93 Å принят равным радиусу шара, объем которого равен абсолютному мольному объему воды при 25°C [29]. Кристаллографические радиусы ионов $r_{K^+} = 1.33$ Å, $r_{Na^+} = 0.965$ Å, $r_{Cl^-} = 0.965$ Å,

1.86 Å - средние величины из предложенных Полингом [30] и Гольдшмидтом [31].

Концентрационные коэффициенты активности 18-краун-6 эфира в водно-спиртовых растворах оценены по уравнениям $\lg \gamma_L = 0.195 m_{\text{NaCl}}$ и $\lg \gamma_L = 0.166 m_{\text{KCl}}$, приняв во внимание практически одинаковый характер влияния различных электролитов на коэффициенты активности неполярных неэлектролитов, в частности бензола [23,32].

Обсуждение результатов

На примере хлорида короната калия (рис. 1) показаны типичные зависимости равновесного выхода монокоронатов в воде и водно-метанольном ($X_{MeOH} = 0.692$) растворителе от начальной концентрации соли и краун-эфира, максимумы на которых отвечают стехиометрически эквивалентным количествам реагирующих веществ (одинаковым исходным концентрациям соли и краун-эфира).

Рис. 1. Зависимость равновесного выхода хлорида короната калия от начальной концентрации соли и краун-эфира в воде и водно-метанольном растворителе.

На рис. 2 приведены зависимости равновесного выхода хлоридов коронатов натрия и калия от концентрации соли и лиганда, взятых в стехиометрическом соотношении, в водно-пропан-2ольных и водно-метанольных растворителях. С возрастанием исходных концентраций реагентов в водно-спиртовых растворах равновесный выход коронатов вначале заметно растет, а начиная с концентраций реагентов $m^{\circ}_{\rm MCl} = m^{\circ}_{\rm L} = 0.5$ моль/(кг растворителя) и выше рост замедляется, а выход короната калия остается практически постоянным (рис. 2) в смесях с высоким содержанием метанола и пропан-2-ола. Но если при концентрациях реагентов $m^{\circ}_{\rm MCl} = m^{\circ}_{\rm L} = 0.5$ $\div 0.7$ моль/(кг растворителя) в водно-метанольных растворителях ($X_{\rm MeOH} = 0.692$), равновесный выход: $X_{\rm KLCl} = 94\%$ и $X_{\rm NaLCl} = 75 \div 77\%$, то в водно-пропан-2-ольном растворителе ($X_{\rm PrOH-2} = 0.545$) равновесный выход короната составляет: $X_{\rm KLCl} = 85 \div 86\%$ и $X_{\rm NaLCl} = 59 \div 62\%$.

Таким образом, на основе водно-метанольных и водно-пропан-2-ольных растворителей можно в широком диапазоне исходных концентраций реагентов варьировать равновесный выход коронатов, что имеет важное практическое значение при моделировании свойств жидких мембран с целью изучения количественных характеристик транспорта катионов ионофорами [33].

К вопросу о влиянии ассоциации ионов на равновесный выход коронатов. Для сред с низкими диэлектрическими проницаемостями или при достаточно высокой концентрации электролита усложняющим фактором является ассоциация ионов [34], так как равновесия ассоциации

$$M^+ + Cl^- = M^+Cl^-, \qquad K_{M^+Cl^-}$$
 (13)

$$ML^{+} + Cl^{-} = ML^{+}Cl^{-}, \qquad K_{ML^{+}Cl^{-}}$$
 (14)

тоже зависят от первичных эффектов среды [34] и солевых эффектов [23] (средних ионных концентрационных коэффициентов активности электролитов и коэффициентов активности ионных пар):

С учетом равновесий (13) и (14) выход коронатов определяется мольной долей

$$X_{\rm MLA} = \frac{[\rm ML^{+}]}{[\rm ML^{+}] + [\rm M^{+}] + [\rm L] + [\rm M^{+}\rm Cl^{-}] + [\rm ML^{+}\rm Cl^{-}]}$$
(15)

Влияние равновесий (13) и (14) на выход коронатов можно учесть при наличии данных по концентрационным константам ионной ассоциации. При этом дискуссионной остается проблема описания концентрационной зависимости коэффициентов активности реагентов и продуктов реакции. Работы в этом направлении нами ведутся [35,36].

Рис. 2. Зависимость равновесного выхода коронатов натрия и калия от стехиометрически эквивалентных количеств веществ (соли и лиганда) и состава водно-спиртовых растворителей.

Влияние первичных эффектов среды, равновесных концентраций реагентов и солевых эффектов на выход коронатов. От численного значения концентрационных констант комплексообразования зависит равновесный выхода продукта реакции MCl + L = MLCl. На рис. З показано влияние эффектов среды $\Sigma \Delta_{tr} G_i^{\circ}$, равновесных концентраций реагентов $\Sigma \Delta G([i])$ и солевых эффектов $\Sigma \Delta G(\gamma)$ на изменение концентрационных констант комплексообразования в зависимости от состава водно-спиртовых растворителей для $m^{\circ}_{MCl} = m^{\circ}_{L} = 0.5$ моль/(кг растворителя).

Увеличение выхода коронатов в водно-спиртовых растворителях по сравнению с водой зависит от первичных эффектов среды, так как энергии Гиббса переноса исходных веществ и продуктов реакции из воды в водно-спиртовые растворители $\Sigma \Delta_{tr} G_i^{\ o} < 0$. Эффекты концентрационные $\Sigma \Delta G([i]) > 0$ и солевые $\Sigma \Delta G(\gamma) > 0$ уменьшают концентрационную константу, а следовательно, выход продукта реакции при замене воды на водно-спиртовые растворители.

Термодинамика комплексообразования и переноса реагентов в стандартном состоянии. Первичные эффекты среды определяют устойчивость образующихся коронатов натрия и калия в стандартном состоянии [10-12], поэтому важной является количественная информация о влиянии сольватационных эффектов реагентов на термодинамику комплексообразования эфира 18-краун-6 с солями калия и натрия в водно-спиртовых растворителях, в частности для построения прогностических моделей структура – свойство [37,38].

Уравнение (8), термодинамические характеристики комплексообразования [22], переноса эфира 18-краун-6 [22,39] и электролитов [40,41], положены нами в основу сопоставительного анализа влияния сольватации эфира 18-краун-6, солей натрия и калия (МА, где $M \equiv Na^+$ или K^+ ; $A \equiv Cl^-$, Br^- , l^- , NO_3^- , ClO_4^- , BPh_4^-), комплексов (LMA) на термодинамику образования монокоронатов натрия и калия в водно-метанольных растворителях. Термодинамические характеристики комплексообразования и переноса реагентов (табл. 1,2) стандартизированы по аквамоляльной концентрационной шкале [42,43].

Рис. 3. Влияние первичных эффектов среды $\Sigma \Delta_{tr} G_i^{\circ}$, равновесных концентраций реагентов $\Sigma \Delta G([i])$ и солевых эффектов $\Sigma \Delta G(\gamma)$ на изменение концентрационных констант комплексообразования в зависимости от состава водно-спиртовых растворителей для $m^{\circ}_{MCl} = m^{\circ}_{L} = 0.5$ моль/(кг растворителя).

По сравнению с водой устойчивость коронатов натрия и калия в водно-метанольных растворителях (табл. 1,2) возрастает ($\Delta\Delta_r G^{\circ} < 0$), однако в случае коронатов натрия возрастание устойчивости обусловлено как энтальпийными ($X_{CH_3OH} > 0.3$), так и энтропийными эффектами комплексообразования ($\Delta\Delta_r H^{\circ} < 0$, $T\Delta\Delta_r S^{\circ} > 0$), в то время как усиление устойчивости коронатов калия контролируется только энтальпией переноса реакции комплексобразования ($\Delta\Delta_r H^{\circ} < 0$, $T\Delta\Delta_r S^{\circ} < 0$) из воды водно-спиртовые растворители.

За исключением коронатов тетрафенилборатов натрия и калия (LMBPh₄), повышение устойчивости комплексов солей калия и натрия с эфиром 18-краун-6 обусловлено антагонизмом энергии Гиббса переноса реагентов [19,44,45] ($\Delta_{tr}G^{\circ}(LMA) < (\Delta_{tr}G^{\circ}(L) + \Delta_{tr}G^{\circ}(MA); \Delta_{tr}G^{\circ}(L) > 0$, $\Delta_{tr}G^{\circ}(MA) > 0$, $\Delta_{tr}G^{\circ}(LMA) > 0$), а возрастание устойчивости комплексов LMBPh₄ в смешанных водно-метанольных растворителях по сравнению с водой обязано уменьшению энергии Гиббса сольватации краун-эфира и стабилизации комплексных частиц ($\Delta_{tr}G^{o}(L) > 0$, $\Delta_{tr}G^{o}(LMBPh_{4}) < 0$) смешанным растворителем.

Таблица 1. Термодинамика переноса (в шкале аквамоляльностей) реакции комплексообразования NaA + L = LNaA (A = Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, BPh₄⁻) и реагентов из воды в воднометанольные растворители при 298.15К

Пополотр	мол. доли метанола										
параметр,	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
кдж/моль	NaA - 18-краун-6 – вода – метанол (перенос солей)										
$\Delta\Delta_r G^{ m o}$	-2.7	-4.9	-6.8	-8.4	-10.0	-11.5	-13.2	-15.0	-17.2	-19.7	
$\Delta \Delta_r H^{\rm o}$	0.9	0.7	0.2	-0.6	-1.4	-2.5	-4.0	-6.7	-11.2	-18.5	
$T\Delta\Delta_r S^{\circ}$	3.5	5.6	6.9	7.8	8.6	9.1	9.1	8.3	5.9	1.2	
	18-краун-6 – вода – метанол (перенос солей)										
$\Delta_{tr}G^{o}(L)$	0.7	1.5	2.2	3.0	3.7	4.5	5.3	6.0	6.8	7.5	
$\Delta_{tr}H^{0}(L)$	15.5	24.8	30.0	32.9	34.9	37.1	40.3	44.8	50.8	58.0	
$T\Delta_{tr}S^{\circ}(L)$	14.8	23.3	27.8	29.9	31.2	32.6	35.0	38.8	44.0	50.5	
	NaCl, LNaCl – вода – метанол (перенос солей)										
$\Delta_{tr}G^{o}(NaCl)$	2.5	4.6	6.9	8.7	10.3	12.2	13.8	15.5	17.2	19.1	
$\Delta_{tr}G^{o}(LNaCl)$	0.6	1.2	2.3	3.2	4.0	5.1	5.9	6.6	6.8	6.9	
$\Delta_{tr}H^{o}(NaCl)$	2.8	3.8	3.8	2.9	1.8	0.3	-1.6	-3.8	-7.1	-11.8	
$\Delta_{tr}H^{o}(LNaCl)$	19.2	29.4	34.0	35.2	35.3	35.0	34.7	34.3	32.5	27.7	
$T\Delta_{tr}S^{o}(NaCl)$	0.3	-0.8	-3.1	-5.7	-8.5	-11.8	-15.3	-19.4	-24.3	-30.9	
$T\Delta_{tr}S^{\circ}(LNaCl)$	18.6	28.1	31.6	32.0	31.2	29.8	28.8	27.7	25.7	20.8	
	NaBr, LNaBr – вода – метанол (перенос солей)										
$\Delta_{tr}G^{o}(NaBr)$	1.9	3.8	5.3	6.8	8.9	10.5	12.2	13.9	15.3	16.5	
$\Delta_{tr}G^{o}(LNaBr)$	0.0	0.4	0.7	1.3	2.6	3.4	4.3	5.0	4.9	4.3	
$\Delta_{tr}H^{o}(NaBr)$	2.8	3.3	2.8	1.5	-0.5	-2.6	-5.0	-7.7	-11.4	-16.5	
$\Delta_{tr}H^{o}(LNaBr)$	19.2	28.9	33.0	33.8	33.0	32.1	31.3	30.4	28.2	23.0	
$T\Delta_{tr}S^{o}(NaBr)$	0.9	-0.5	-2.5	-5.2	-9.4	-13.0	-17.1	-21.7	-26.7	-33.0	
$T\Delta_{tr}S^{o}(LNaBr)$	19.2	28.4	32.2	32.5	30.3	28.6	27.0	25.4	23.3	18.7	
		-]	NaI, LNaI	– вода – ме	танол (перен	юс солей)			_	
$\Delta_{tr}G^{o}(NaI)$	2.2	3.2	4.0	5.4	6.8	9.4	11.9	13.6	13.3	10.9	
$\Delta_{tr}G^{o}(LNaI)$	0.2	-0.2	-0.6	0.0	0.5	2.4	3.9	4.6	2.9	-1.3	
$\Delta_{tr}H^{o}(NaI)$	2.8	3.3	2.4	0.5	-1.7	-4.3	-7.4	-10.8	-15.5	-22.0	
$\Delta_{tr}H^{0}(LNaI)$	19.2	28.9	32.6	32.8	31.8	30.4	28.9	27.3	24.1	17.5	
$T\Delta_{tr}S^{o}(NaI)$	0.6	0.1	-1.6	-4.9	-8.5	-13.7	-19.3	-24.4	-28.8	-32.9	
$T\Delta_{tr}S^{o}(LNaI)$	19.1	28.7	33.3	32.9	31.1	28.5	24.9	22.9	21.1	19.2	
			NaN	IO3, LNaN	Ю3 – вода ∙	– метанол (п	еренос сол	іей)			
$\Delta_{tr}G^{o}(NaNO_{3})$	2.0	3.5	4.8	6.1	7.5	9.0	10.5	12.0	13.3	12.5	
$\Delta_{tr}G^{o}(LNaNO_{3})$	0.1	0.1	0.2	0.6	1.3	2.0	2.6	3.0	3.0	0.3	
$\Delta_{tr}H^{o}(NaNO_{3})$	5.8	6.6	5.2	3.4	1.6	-0.4	-3.0	-6.8	-11.8	-17.6	
$\Delta_{tr}H^{o}(LNaNO_{3})$	22.2	32.1	35.4	35.7	35.0	34.3	33.2	31.4	27.8	21.9	
$T\Delta_{tr}S^{o}(NaNO_{3})$	3.9	3.1	0.4	-2.7	-6.0	-9.4	-13.5	-18.8	-25.2	-30.1	
$T\Delta_{tr}S^{\circ}(LNaNO_3)$	22.1	32.0	35.1	35.0	33.8	32.3	30.6	28.3	24.8	21.6	
			NaC	lO ₄ , LNaC	lO ₄ – вода	– метанол (п	еренос сол	пей)			
$\Delta_{tr}G^{\circ}(\text{NaClO}_4)$	1.7	3.1	4.2	5.2	6.3	7.5	9.0	10.6	11.9	10.4	
$\Delta_{tr}G^{o}(LNaClO_{4})$	-0.2	-0.3	-0.3	-0.2	0.0	0.5	1.1	1.6	1.5	-1.9	
$\Delta_{tr}H^{o}(NaClO_{4})$	7.0	6.3	3.4	0.7	-1.7	-4.4	-7.8	-11.3	-11.6	-1.9	
$\Delta_{tr}H^{o}(LNaClO_{4})$	23.4	31.9	33.6	33.0	31.8	30.3	28.4	26.8	28.1	37.6	
$T\Delta_{tr}S^{\circ}(NaClO_4)$	5.3	3.2	-0.8	-4.6	-8.0	-11.9	-16.8	-21.9	-23.5	-12.2	
$T\Delta_{tr}S^{\circ}(LNaClO_4)$	23.6	32.2	33.9	33.2	31.7	29.8	27.3	25.2	26.5	39.5	
		NaBPh ₄ , LNaBPh ₄ – вода – метанол (перенос солей)									
$\Delta_{tr}G^{o}(NaBPh_{4})$	-2.1	-5.4	-8.9	-11.3	-14.1	-15.8	-17.1	-18.1	-19.1	-18.2	
$\Delta_{tr}G^{o}(\text{LNaBPh}_{4})$	-4.0	-8.8	-13.5	-16.8	-20.4	-22.9	-25.0	-27.0	-29.5	-30.4	
$\Delta_{tr}H^{o}(NaBPh_{4})$	23.5	31.4	30.4	24.9	18.2	11.1	3.9	-3.7	-12.1	-20.8	
$\Delta_{tr}H^{o}(LNaBPh_{4})$	39.9	57.0	60.6	57.2	51.7	45.8	40.2	34.4	27.5	18.7	
$T\Delta_{tr}S^{o}(\text{NaBPh}_{4})$	25.6	36.8	39.3	36.3	32.3	27.0	21.1	14.3	7.0	-2.6	
$T\Delta_{tr}S^{\circ}(LNaBPh_4)$	43.9	65.7	74.0	74.0	72.0	68.6	65.2	61.4	57.0	49.1	

Пополкото	мол. доли метанола										
параметр,	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
кдж/моль	КА - 18-краун-6 – вода – метанол (комплексообразование)										
$\Delta\Delta_r G^{ m o}$	-1.3	-3.0	-5.1	-7.3	-9.7	-12.2	-14.7	-17.2	-19.5	-21.7	
$\Delta\Delta_r H^{ m o}$	-5.3	-8.7	-10.7	-11.8	-12.5	-13.4	-14.9	-17.5	-21.8	-28.2	
$T\Delta\Delta_r S^{\circ}$	-4.0	-5.7	-5.7	-4.5	-2.9	-1.2	-0.2	-0.4	-2.3	-6.5	
	18-краун-6 – вода – метанол (перенос лиганда)										
$\Delta_{tr}G^{o}(L)$	0.7	1.5	2.2	3.0	3.7	4.5	5.3	6.0	6.8	7.5	
$\Delta_{tr}H^{0}(L)$	15.5	24.8	30.0	32.9	34.9	37.1	40.3	44.8	50.8	58.0	
$T\Delta_{tr}S^{o}(L)$	14.8	23.3	27.8	29.9	31.2	32.6	35.0	38.8	44.0	50.5	
	KCl, LKCl – вода – метанол (перенос солей)										
$\Delta_{tr}G^{o}(\mathrm{KCl})$	2.1	4.2	5.3	8.4	11.5	14.9	18.0	23.2	25.1	25.0	
$\Delta_{tr}G^{o}(LKCl)$	1.5	2.7	2.4	4.0	5.5	7.2	8.6	12.1	12.3	10.7	
$\Delta_{tr}H^{o}(\mathrm{KCl})$	2.1	2.8	2.5	1.4	-0.0	-1.5	-3.3	-5.3	-8.2	-12.1	
$\Delta_{tr}H^{o}(LKCl)$	12.3	18.9	21.8	22.5	22.3	22.2	22.1	22.0	20.8	17.6	
$T\Delta_{tr}S^{o}(KCl)$	0.0	-1.4	-2.8	-6.9	-11.5	-16.3	-21.3	-28.6	-33.3	-37.1	
$T\Delta_{tr}S^{\circ}(LKCl)$	10.8	16.3	19.3	18.5	16.8	15.1	13.6	9.9	8.5	6.9	
	КВг, LКВг – вода – метанол (перенос солей)										
$\Delta_{tr}G^{o}(\mathrm{KBr})$	2.2	3.6	5.2	7.0	9.3	12.3	15.4	18.4	21.0	22.3	
$\Delta_{tr}G^{o}(LKBr)$	1.6	2.1	2.3	2.6	3.3	4.6	6.0	7.3	8.2	8.0	
$\Delta_{tr}H^{0}(\mathrm{KBr})$	1.8	1.8	0.9	-1.0	-3.0	-5.1	-7.3	-9.4	-12.0	-15.2	
$\Delta_{tr}H^{o}(LKBr)$	12.0	17.9	20.2	20.1	19.3	18.6	18.1	17.9	17.0	14.5	
$T\Delta_{tr}S^{o}(KBr)$	-0.4	-1.8	-4.3	-7.9	-12.3	-17.3	-22.6	-27.9	-33.0	-37.5	
$T\Delta_{tr}S^{o}(LKBr)$	10.4	15.9	17.8	17.5	16.0	14.1	12.2	10.6	8.8	6.5	
				KI, LKI-	– вода – мет	анол (перенс	с солей)				
$\Delta_{tr}G^{o}(\mathrm{KI})$	2.0	2.7	4.1	5.9	8.1	10.8	14.0	16.0	16.0	11.5	
$\Delta_{tr}G^{o}(LKI)$	1.4	1.2	1.2	1.5	2.1	3.1	4.6	4.9	3.2	-2.8	
$\Delta_{tr}H^{0}(\mathrm{KI})$	2.3	2.5	1.6	-0.3	-2.5	-5.0	-7.9	-11.0	-15.2	-20.9	
$\Delta_{tr}H^{0}(LKI)$	12.5	18.6	20.9	20.8	19.8	18.7	17.5	16.3	13.8	8.8	
$T\Delta_{tr}S^{o}(KI)$	0.3	-0.2	-2.5	-6.1	-10.6	-15.7	-21.9	-27.1	-31.2	-32.4	
$T\Delta_{tr}S^{o}(LKI)$	11.1	17.5	19.6	19.3	17.7	15.7	13.0	11.4	10.6	11.6	
	КВРh ₄ , LKBPh ₄ – вода – метанол (перенос солей)										
$\Delta_{tr}G^{o}(\text{KBPh}_4)$	-2.5	-5.8	-9.1	-11.6	-13.8	-15.5	-16.0	-17.0	-17.8	-19.1	
$\Delta_{tr}G^{o}(LKBPh_{4})$	-3.1	-7.3	-12.0	-16.0	-19.8	-23.2	-25.4	-28.1	-30.6	-33.4	
$\Delta_{tr}H^{o}(\text{KBPh}_{4})$	22.8	30.7	29.3	23.4	16.4	9.3	2.3	-5.2	-13.2	-21.1	
$\Delta_{tr}H^{o}(LKBPh_{4})$	33.0	46.8	48.6	44.5	38.7	33.0	27.7	22.1	15.8	8.6	
$T\Delta_{tr}S^{o}(\text{KBPh}_{4})$	25.3	36.5	38.4	35.1	30.2	24.9	18.3	11.7	4.6	-2.0	
$T\Delta_{tr}S^{o}(LKBPh_{4})$	36.1	54.2	60.5	60.5	58.5	56.3	53.2	50.2	46.4	42.0	

Таблица 2. Термодинамика переноса (в шкале аквамоляльностей) реакции комплексообразования NaA + L = LKA (A = Cl⁻, Br⁻, l⁻, BPh₄⁻) и реагентов из воды в водно-метанольные растворители при 298.15 К

Примечание: $\Delta \Delta_r G^{\circ} = \Delta_r G^{\circ SW} - \Delta_r G^{\circ W}$, $\Delta \Delta_r H^{\circ} = \Delta_r H^{\circ SW} - \Delta_r H^{\circ W}$, $T \Delta \Delta_r S^{\circ} = T \Delta_r S^{\circ SW} - T \Delta_r S^{\circ W}$ – термодинамические параметры переноса реакции комплексообразования из воды (*W*) в водно-спиртовый растворитель (*SW*); $\Delta_{tr} G^{\circ} = \Delta_s G^{\circ SW} - \Delta_h G^{\circ W}$, $\Delta_{tr} H^{\circ} = \Delta_s H^{\circ SW} - \Delta_h H^{\circ W}$, $T \Delta_{tr} S^{\circ} = T \Delta_s S^{\circ SW} - T \Delta_h S^{\circ W}$ – термодинамические характеристики переноса реагентов (*s* – сольватация, *h* – гидратация).

До $X_{CH_2OH} = 0.3$ синергизм энтальпии переноса реагентов [19,44] ($\Delta_{tr}H^o(LNaA) > (\Delta_{tr}H^o(L))$

+ $\Delta_{tr}H^{o}(NaA)$; $\Delta_{tr}H^{o}(L) > 0$, $\Delta_{tr}H^{o}(MA) > 0$, $\Delta_{tr}H^{o}(LMA) > 0$) способствует эндотермичности переноса реакции образования коронатов натрия ($\Delta\Delta_{r}H^{o} > 0$) из воды в водно-метанольные растворители. Дальнейшее увеличение содержания метанола в смешанном растворителе сопровождается экзотермичностью переноса реакции комплексообразования эфира 18-краун-6 с катионами натрия и калия ($\Delta\Delta_{r}H^{o} < 0$) в результате резкого возрастания эндотермичности переноса эфира 18-краун-6 ($\Delta_{tr}H^{o}(L) > 0$).

Синергизм энтропии переноса реагентов [19,44] приводит к положительным энтропиям переноса реакции образования коронатов тетрафенилборатов натрия и калия (табл. 1,2), что определяет рост устойчивости комплексов в водно-метанольных растворителях ($\Delta \Delta_r G^{\circ} < 0$). Аналогичный стабилизирующий эффект энтропии переноса реакции комплексообразования краунэфира с другими солями сопряжен как с увеличением энтропии переноса комплексов $(T\Delta_{tr}S^{o}(LMA) > 0)$, так и с уменьшением энтропии переноса солей $(T\Delta_{tr}S^{o}(MA) < 0)$.

Заключение

В работе изложены методологические основы прогнозирования равновесного выхода коронатов и анализа влияния эффектов среды на концентрационную константу равновесия в реальных растворах. В частности, впервые показано влияние солевых, концентрационных и первичных эффектов водно-метанольных и водно-пропан-2-ольных растворов на равновесный выход коронатов натрия (18-краун-6)NaCl и калия (18-краун-6)KCl. Дальнейшее развитие работ в этом направлении связано с решением вопросов термодинамического описания многоступенчатого комплексообразования, влияния ионной ассоциации на равновесия образования комплексов, разработки достаточно удовлетворительных методов оценки коэффициентов активности электролитов, неэлектролитов и ионных ассоциатов в широком интервале концентраций реагентов и составов водно-органических растворителей.

Литература

- 1. Химия комплексов «гость-хозяин». Синтез, структуры и применения / Под ред. Ф.Фегтле, Э.Вебера. М.: Мир, 1988. 511 с.
- 2. Манорик П.А. Разнолигандные био-координационные соединения металлов в химии, биологии, медицине. К.: Наукова думка, 1991. 271 с.
- 3. Солдатов Д.В., Терехова И.С. // Ж. структ. химии. 2005. Т. 46. №1. С. 5–11.
- 4. Яцимирский К.Б., Мосин В.В., Козачкова А.Н., Ефименко И.А. // Коорд. химия. 1993. Т.19. № 10. С. 793–796.
- 5. Раевский О.А., Ткачев В.В., Казаченко В.П., Атовмян Л.О. // Изв. РАН. Сер. хим. 1991. №8. С. 1819–1824.
- 6. Иванов М.Г., Ващенко С.Д., Баклыков В.Г., Калиниченко И.И., Резникова Л.А. // Коорд. химия. 1989. Т.15. №3. С. 329–332.
- 7. Ткачев В.В., Атовмян Л.О. // Коорд. химия. 1994. Т.20. №4. С. 262–269.
- 8. Ткачев В.В., Автомян Л.О., Якушенко И.К. Коорд. химия. 1993. Т.19. № 11. С. 831-838.
- Ткачев В.В., Атовмян Л.О., Зубарева В.Е., Раевский О.А. // Коорд. химия. 1990. Т.16. № 4. С. 443–447.
- 10. Bondarev N.V. Book of abstracts Inter. conf. "Modern Physical Chemistry for advanced materials (MPS'07)". Kharkiv, Ukraine. 2007. P.169–171.
- Smirnova E.V., Pershin A.S., Bondarev N.V. Abstracts X International conference on the problems of solvation and complex formation in solutions. Suzdal, Russia. 2007. Vol. II. 5S. 632-633.
- 12. Бондарев Н.В. Тез. докл. Междунар. конференции "Физико-химические основы новейших технологий XXI века". Москва, 2005. Т.1. ч.2. С. 245.
- Научное наследие Н.А. Измайлова и актуальные проблемы физической химии / Под. ред. В.И. Лебедя, Н.О. Мчедлова-Петросяна, Ю.В. Холина. Х.: ХНУ имени В.Н. Каразина, 2007. 675 с.
- 14. Биологически активные вещества в растворах: структура, термодинамика, реакционная способность / В.К. Абросимов, А.В. Агафонов, Р.В. Чумакова и др. М.: Наука, 2001. 403. с.
- 15. Фиалков Ю.Я. Растворитель как средство управления химическим процессом. Л.: Химия. 1990. 240 с.
- Бондарев Н.В., Зайцева И.С. Материалы II Междунар. научно-практ. конф. "Научная мысль информационного века - 2007". Днепропетровск. "Наука и образование". 2007. Т. 3. С. 23–25.
- Бондарев Н.В., Зайцева И.С. Материалы II Междунар. научно-практ. конф. "Европейская наука XXI века-2007". Днепропетровск. "Наука и образование". 2007. Т. 9. С. 61–63.
- 18. Кабакова Е.Н., Бондарев Н.В. Журн. физ. химии. 1998. Т.72. №7. С.1196–1199.
- 19. Бондарев Н.В. Журн. общ. химии. 2006. Т. 76. № 1. С. 13-18.
- 20. Диди Ю., Бондарев Н.В. Журн. общ. химии. 1996. Т. 66. № 8. С. 1267–1270.
- 21. Диди Ю., Цурко Е.Н., Бондарев Н.В. Журн. общ. химии. 1997. Т. 67. № 6. С. 885-888.

- 22. Бондарев Н.В. Журн. физ. химии. 1999. Т.73. №6. С. 1019-1024.
- 23. Гордон Дж. Органическая химия растворов электролитов. М.: Мир. 1979. 712 с.
- 24. Антропов Л.І. Теоретична електрохімія. К.: Либідь. 1993. 540 с.
- 25. Desnoyers J.E., Jolicoeur C. Ionic solvation. Comprehensive Treatise of Electrochemistry. New York, London. 1983. Vol. 5. P. 1–109.
- Бондарев Н.В., Зайцева И.С. Материалы II Междунар. научно-практ. конф. "Европейская наука XXI века-2007". Днепропетровск. "Наука и образование". 2007. Т. 9. С. 61–63.
- 27. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высшая школа, 1982. 320 с.
- 28. Рабинович В.А. Термодинамическая активность ионов в растворах электролитов. Л.: Химия, 1985. 176 с.
- 29. Мищенко К.П., Полторацкий Г.М. Термодинамика и строение водных и неводных растворов электролитов. Л.: Химия, 1976. 328 с.
- 30. Pauling L. J. Amer. Chem. Soc. 1927. V. 49. № 3. P. 765–790.
- 31. Goldschmidt V.M. Ber. deut. Chem. Ges. 1927. Bd. 60. № 1. S. 1263–1296.
- 32. Гаммет Л. Основы физической органической химии. М.: Мир, 1972. 535с.
- 33. Химия жизни: Избранные труды / Ю.А. Овчинников. М.: Наука, 1990. 496 с.
- 34. Бондарев Н.В. Журн. физ. химии. 1999. Т.73. №1. С. 74–77.
- 35. Tsurko E.N., Bondarev N.V. J. Mol. Liquids. 2004. № 113. P. 29–36.
- 36. Зайцева И.С., Бондарев Н.В., Ефимов П.В., Жолновач А.М. Вестник Харьк. нац. университета. 2007. № 770. Химия. Вып. 15(38). С. 273–280.
- 37. Бондарев Н.В. Журн. общ. химии. 1999. Т.69. №2. С. 229-234.
- Соловьев В.П. Термодинамика супрамолекулярных комплексов краун-эфиров и их макроциклических и ациклических аналогов. Дис. ... докт. хим. наук. Москва. ИФХЭ, 2007. 350 с.
- 39. Ларина О.В., Керн А.П., Бондарев Н.В. Журн. общ. химии. 1997. Т.67. №9. С. 1439-1442.
- 40. Kalidas C., Hefter G., Marcus Y. Chem. Rev. 2000. V. 100. № 3. P. 819–852.
- 41. Hefter G., Marcus Y., Waghorne W.E. Chem. Rev. 2002. V.102. №8. P. 2773–2836.
- 42. Абросимов В.К. Современные проблемы химии растворов. М.: Наука, 1986. С. 97–156.
- 43. Tsurko E.N., Bondarev N.V. J. Mol. Liquids. 2007. № 131–132. P.151–157.
- 44. Бондарев Н.В., Кабакова Е.Н., Ельцов С.В., Зайцева И.С. Журн. физ. химии. 2003. Т.77. № 10. С. 1783–1789.
- 45. Ларина О.В., Бондарев Н.В., Керн А.П. // Вестник Харьк. нац. университета. 2007. № 770. Химия. Вып. 15(38). С. 301–312.

Поступила в редакцию 29 июня 2008 г.

Kharkov University Bulletin. 2008. № 820. Chemical Series. Issue 16(39). Larina O. V., Bondarev N. V., Kern A. P. The equilibrium yield of coronates (18-crown-6NaCl, 18-crown-6KCl) in water-methanol and water-propan-2-ol solvents and effects of a medium.

For the first time the influence of salt, concentration and primary effects of water-methanol and water-propan-2ol solutions on the equilibrium yield of sodium (18-crown-6NaCl) and potassium (18-crown-6KCl) was studied on the basis of the offered experimental - theoretical approach.