#### УДК 539.194+544.182.5

# СПЕКТРОСКОПИЧЕСКИЕ ПАРАМЕТРЫ МОЛЕКУЛЫ <sup>7</sup>LiH В МЕТОДЕ CASCCSD

## © 2010 Т. А. Клименко, В. В. Иванов

Методом мультиреференсной теории связанных кластеров в полном активном пространстве молекулярных орбиталей, проведены расчеты поверхностей потенциальных энергий молекулы <sup>7</sup>LiH в основном X<sup>1</sup>Σ<sup>+</sup> и первом возбужденном состоянии A<sup>1</sup>Σ<sup>+</sup>. Проанализированы экспериментальные и теоретические методы расчета спектроскопических констант и значений энергий колебательных термов.

Ключевые слова: теория связанных кластеров, поверхность потенциальной энергии, спектроскопические константы, гидрид лития.

## Введение

Гидрид лития, как простейшая гетерополярная двухатомная молекулярная система, находится в центре внимания теоретического и спектрального исследования с 1930-х годов. Так, среди многочисленных научных публикаций, посвященных изучению гидридов щелочных металлов, значительную часть занимают работы, связанные с изучением специфических явлений в молекуле LiH. Например, анализ эффектов неадиабатичности, работы по исследованию нарушения квазиклассического приближения в методе Ридберга-Клейна–Риса (RKR), в особенности, в области диссоциации молекулы и в слабосвязанных состояниях [1].

Простая электронная структура LiH позволяет объяснить специфические эффекты, возникающие в молекуле. В результате ион - ковалентного квазипересечения поверхностей потенциальных энергий (ППЭ) основного  $X^1\Sigma^+$  и первого возбужденного  $A^1\Sigma^+$  состояний, характер *A* состояния меняется. По Малликену [2], *X* состояние характеризуется преимущественно ионной конфигурацией Li<sup>+</sup>H<sup>-</sup> вблизи равновесной межъядерной геометрии, тогда как для *A* состояния, конфигурация Li<sup>+</sup>H<sup>-</sup> преобладает на больших межъядерных расстояниях. Как следствие, на ППЭ *A* состояния явно выражены плоский минимум и значительная ангармоничность (Рис. 1). Константа ангармонизма  $\omega_{exe}$  ( $A^1\Sigma^+$ ) принимает отрицательное значение (см. раздел «Результаты и обсуждение»), а первые уровни колебательной энергии располагаются более плотно по мере увеличения колебательного квантового числа. Подобные аномалии ППЭ первого возбужденного состояния характерны для всех щелочных гидридов [1], поэтому эти молекулы, в особенности LiH, интересны в плане экспериментального и теоретического изучения.



С теоретической точки зрения, четырехэлектронное строение молекулы LiH, делает ее идеальной тестовой системой для реализации различных квантовых методов, вплоть до полного конфигурационного взаимодействия (*Full configuration interaction, FCI*). Вместе с тем, в электронном строении LiH проявляются свойства более сложных систем, например, значительные корреляционные эффекты, связанные с трехкратно и четырехкратно возбужденными электронными конфигурациями. Поэтому изучением LiH занимались и на полуэмпирическом, и на неэмпирическом уровне. На сегодняшний момент известно, что для получения количественно достоверных спектроскопических данных, необходимо провести расчет ППЭ на всем диапазоне межъядерных расстояний, включая разрыв химической связи, в многоконфигурационном или мультиреференсном (*Multireference, MR*) приближениях. Поскольку только в таких расчетах в расширенном базисе атомных орбиталей (AO), например, сс-pVXZ, X=D, T, Q [3], в полной мере учитываются эффекты динамической и нединамической корреляции электронов. Мы лишь кратко коснемся некоторых работ, которые посвящены высоко коррелированным методам расчета ППЭ и энергетике колебаний.

Еще 30 лет назад молекулу LiH назвали «рабочей станцией теоретической химии», тогда же появились первые расчетные работы Партриджа и Лангхоффа [4], в которых представлены MCSCF-CI расчеты потенциальных кривых основного состояния LiH в слейтеровском базисе AO; их ППЭ до сих пор приводят для сравнения. В то же время проводились расчеты ППЭ с AO гауссова типа [5]. Позже, появились расчеты адиабатических и диабатических ППЭ LiH, с применением неэпирического псевдопотенциала для описания остовых электронов и полным CI учетом валентных электронов [6].

В теории связанных кластеров (*Coupled Cluster, CC*), первые расчеты ППЭ LiH были проведены в работах Дикстра [7,8] в однодетерминантном (*Single reference,* SR) приближении с учетом однократных и двукратных возбуждений, с использованием орбиталей Бракнера (SR CCSD/BO). Результаты MR расчета связанных кластеров (MR CCSD) впервые представлены в работах Балкова [9]. Но ни в этих, ни в последующих работах не приводится полный анализ колебательных параметров, т.е. таких величин, которые напрямую зависят от точности вычислений ППЭ.

Анализ колебательных параметров является мощным инструментов для качественной и количественной оценки точности расчета ППЭ. При обработке данных, имеющихся в [4-6, 8] высокоточных расчетов, оказалось, что ошибка в значениях вибронных термов стремительно растет с увеличением колебательного квантового числа [10]. По этой причине, во многих расчетных работах, в том числе и в упомянутых выше, проводится анализ только низших колебательных уровней. Для описания же процессов разрыва и образования химической связи, ключевую роль играет многоконфигурационное представление волновой функции. И в решении данной колебательной задачи, методы теории связанных кластеров играют ведущую роль. Детальный обзор и сравнительный анализ колебательных параметров для известных методов СС представлен в работе Палдуса [10]. Нас в первую очередь интересовало сопоставление результатов СС, полученных в MR методе Палдуса с нашими MR расчетами. В данной работе, мы представляем результаты, полученные в мультиреференсном методе связанных кластеров, в полном активном пространстве (CASCCSD) [11-13]. Метод CASCCSD разработан в нашей группе и реализован как дополнительный модуль к широко известному программному комплексу GAMESS [14]. Метод CASCCSD позволяет с высокой точностью рассчитывать ППЭ основного и возбужденных состояний малых молекул на всем диапазоне межъядерных значений. Поскольку расчет ППЭ возбужденных состояний молекул имеет некоторые особенности [13], в этом случае, мы обозначаем наш метод как XCASCCSD.

#### Расчетная схема метода CASCCSD

Методы теории связанных кластеров основаны на экспоненциальном представлении волновой функции (CC *ansatz*). Классическая волновая функция метода CC в однодетерминантном приближении с учетом однократных и двукратных возбуждений имеет вид:

$$|\Psi_{SRCCSD}\rangle = \exp(\mathbf{T}_1 + \mathbf{T}_2)|0\rangle, \qquad (1)$$

где операторы  $T_1$  и  $T_2$  строят суперпозиции однократных и двукратных возбуждений относительно одного хартри-фоковского детерминанта  $|0\rangle$ . Прямое обобщение (1) для многоконфигурационного представления волновой функции, приводит к выражению:

$$\left|\Psi_{MRCCSD}\right\rangle = \sum_{I=I,M} \exp(T_{I}^{(I)} + T_{2}^{(I)}) \left|\Phi_{I}\right\rangle, \qquad (2)$$

где набор детерминантов  $|\Phi_I\rangle$ , формирует референсное пространство размерностью M (модельное пространство референсных детерминантов), а операторы  $T_I^{(I)}$  и  $T_2^{(I)}$  строят суперпозиции однократных и двукратных возбуждений относительно каждого референсного детерминанта модельного пространства. Существует несколько подходов к выбору модельного пространства. В наших расчетах, весь набор молекулярных орбиталей (МО) делится на неактивные (остовные, вакантные) и активные (высшие занятые и нижайшие вакантные МО) (Рис. 2). В качестве референсных выступают только те детерминанты, для которых остовные МО двукратно заняты, а активные МО заселены всеми возможными способами. Сформированное таким образом модельное пространство является полным и называется «активным» (*Complete Active Space, CAS*).

Поскольку в молекуле LiH одна одинарная связь, то многоконфигурационные эффекты в области диссоциации ППЭ, возникают за счет орбитального вырождения связующей 2  $\sigma$  и разрыхляющей 3  $\sigma^*$  MO. Поэтому в расчетах мы используем только четырехмерное модельное пространство, образующееся за счет распределения двух электронов среди этих двух активных орбиталей (2,2). Активное пространство референсных детерминантов (2,2) охватывает основной детерминант Хартри-Фока  $|\alpha\rangle$ , две однократно возбужденные, вырожденные конфигура-





Рис. 2. Активное пространство МО LiH для расчета  $\Sigma^+$  состояний

Построение волновой функции в методе CASCCSD, заключается в том, что из четырех референсных детерминантов (Рис. 2) мы выбираем только один (в зависимости от целевого состояния) – «формально референсный детерминант» –  $|0\rangle$ . Такой детерминант обычно дает максимальный вклад в точную волновую функцию. Далее, однократные и двукратные возбуждения относительно всех четырех референсных детерминантов формируются как возбуждения высшей кратности относительно этого «формально референсного детерминанта»  $|0\rangle$ . Таким образом, общая волновая функция CAS(2,2)CCSD записывается в виде:

$$\left|\Psi_{CAS(2,2)CCSD}\right\rangle = \exp(\mathbf{T}_{1} + \mathbf{T}_{2})\left(1 + \mathbf{C}_{1} + \mathbf{C}_{2}\right)\left|\theta\right\rangle.$$
(3)

Здесь, операторы  $C_1$  и  $C_2$  генерируют распределение электронов среди активных орбиталей (формируют суперпозиции референсных детерминантов), а операторы  $T_1$  и  $T_2$  строят суперпозиции однократных и двукратных возбуждений соответственно относительно всех референсных детерминантов. Конкретный выбор «формально референсного детерминанта»  $|0\rangle$  из набора детерминантов:  $|\alpha\rangle$ ,  $|\beta\rangle$ ,  $|\beta'\rangle$  и  $|\delta\rangle$  был сделан нами исходя из предварительного расчета мультиреференсным методом конфигурационного взаимодействия (один из вариантов реализован в GAMESS [14]). Как отмечалось выше, вклад «формально референсного детерминанта»  $|0\rangle$  ( $\phi_i$ ) в общую волновую функцию CASCCSD (4) должен быть максимальным:

$$\Psi_{CAS(2,2)CCSD} \rangle \approx \varphi_1 |\alpha\rangle + \varphi_2 |\beta\rangle + \varphi_3 |\beta'\rangle + \varphi_4 |\delta\rangle.$$
(4)

Анализ результирующих волновых функций CASCCSD для основного и первого возбужденного состояний подтвердил корректность нашего выбора  $|0\rangle$ . Следует отметить, что структура волновой функции принципиально меняется в процессе растяжения химической связи. На рис. 3 представлена зависимость вкладов доминирующих конфигураций на всем диапазоне межъядерных расстояний (R) для основного  $X^1 \Sigma^+$  и первого возбужденного  $A^1 \Sigma^+$  состояний молекулы LiH.



Рис. 3. Вклады референсных детерминантов  $|\alpha\rangle$ ,  $|\beta\rangle$ ,  $|\beta'\rangle$  и  $|\delta\rangle$  в общую волновую функцию CASCCSD в расчетах  $\Sigma^+$  состояний

При расчете ППЭ основного состояния (X<sup>1</sup>Σ<sup>+</sup>) в широком интервале межъядерных расстояний, вплоть до 4 Å, в качестве  $|0\rangle$  выступает детерминант  $|\alpha\rangle$ . При увеличении межъядерного расстояния R > 4 Å доминирующим детерминантом оказывается детерминант  $|\beta\rangle$  (или  $|\beta'\rangle$ ). В расчетах возбужденного состояния (A<sup>1</sup>Σ<sup>+</sup>) ситуация противоположная. Для малых расстояний, «формально референсный детерминант»  $|0\rangle = |\beta\rangle = |\beta'\rangle$ . При R > 3.5 Å найдено, что  $|0\rangle = |\alpha\rangle$ .

## Анализ колебательных параметров

Выражение для энергии колебательных уровней, представляют в виде разложения в ряд по соответствующим коэффициентам Данхема  $Y_{ii}$  [15]:

$$G(\mathbf{v}) = \sum_{i} \sum_{j} Y_{ij} h \left( \mathbf{v} + \frac{1}{2} \right)^{i} J^{j} (J+I)^{j} , \qquad (5)$$

где v – квантовое число колебания, J - квантовое число вращения, i и j – степенные коэффициенты разложения, h = l, постоянная Планка в атомной системе единиц<sup>1</sup>.

Спектроскопические константы, полученные при обработке экспериментальных данных или же данных ab initio, принято выражать через соответствующие коэффициенты Данхема  $Y_{ij}$ . Однако, «экспериментальные» параметры Данхема существенно зависят от многих факторов, в частности, от способа построения квазиклассического метода обработки экспериментальных данных. Известны квазиклассические методы RKR, Вентзеля-Крамерса-Бриллюэна (WKB), приближение обратных возмущений (Inverted Perturbation Approach, IPA). Следует заметить, что в современной литературе принято различать коэффициенты Данхема в зависимости от

<sup>&</sup>lt;sup>1</sup> Здесь, и далее в расчетах, применяется атомная система единиц:

Единицы измерения энергии, см<sup>-1</sup>, эВ: 1 а.е. = 219474.6313705(15) см<sup>-1</sup>, 1 эВ = 8065.54445(69) см<sup>-1</sup>. Единицы измерения длины, Å: 1 а.е. = 0.5291772108(18) Å.

Приведенная масса <sup>7</sup>LiH рассчитана относительно массы  $\mu$  (<sup>12</sup>C),  $\mu$ (LiH) = 1606.39892 a.e. Значения фундаментальных констант можно найти в таблицах CODATA [16].

способа решения соответствующих квазиклассических уравнений. Коэффициенты Данхема первого порядка записываются как  $Y_{ij}^{(0)}$ , в отличие от общепринятых  $Y_{ij}$ . К сожалению, верхний индекс (0) часто не указывают. Разница между этими коэффициентами становится понятной, если каждый коэффициент Данхема представить как сумму:

$$Y_{ij} = Y_{ij}^{(0)} + Y_{ij}^{(1)} + Y_{ij}^{(2)} + Y_{ij}^{(3)} + \dots$$
(6)

Вклады высших порядков в разложении (6) постепенно уменьшаются, при условии соблюдения адиабатичности. Детальный анализ (6) проведен в работе [1], где в частности отмечается, что только коэффициенты Данхема первого порядка  $Y_{ij}^{(0)}$  соответствуют спектроскопическим константам. А именно, фундаментальная частота колебания  $\omega_e = Y_{10}^{(0)}$ , константа ангармонизма первого порядка  $\omega_e \chi_e = -Y_{20}^{(0)}$ , вращательная постоянная  $B_e = Y_{01}^{(0)}$ , константа колебательно-вращательного взаимодействия  $\alpha_e = Y_{11}^{(0)}$ , константа центрифугического растяжения (поправка на вращение)  $\overline{D}_e = Y_{02}^{(0)}$ . Для нулевого вращательного состояния (J = 0), выражение для энергии колебаний принимает вид:

$$G(\mathbf{v}) = \sum_{i=l} Y_{i0} \left( \mathbf{v} + \frac{l}{2} \right)^{i} = Y_{00}^{(0)} + Y_{l0}^{(0)} \left( \mathbf{v} + \frac{l}{2} \right) + Y_{20}^{(0)} \left( \mathbf{v} + \frac{l}{2} \right)^{2} + Y_{30}^{(0)} \left( \mathbf{v} + \frac{l}{2} \right)^{3} + Y_{40}^{(0)} \left( \mathbf{v} + \frac{l}{2} \right)^{4} + \dots$$

$$= Y_{00}^{(0)} + \omega_{e} \left( \mathbf{v} + \frac{l}{2} \right) - \omega_{e} \chi_{e} \left( \mathbf{v} + \frac{l}{2} \right)^{2} + \omega_{e} y_{e} \left( \mathbf{v} + \frac{l}{2} \right)^{3} - \omega_{e} z_{e} \left( \mathbf{v} + \frac{l}{2} \right)^{4} + \dots$$
(7)

Уровни колебательной энергии G(v) в нулевом вращательном состоянии (J = 0) связаны с колебательным квантовым числом v, и вычисляются путем численного интегрирования радиального уравнения Шредингера для ядерных движений:

$$\left\{\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2} - U(R) - \frac{\hbar^2}{2\mu R^2} \left[J(J+I) - \Omega^2\right] + G(v,J)\right\} \Psi(R;v,J) = 0, \qquad (8)$$

где µ - приведенная масса молекулы,  $\Omega$  - проекция электронного углового момента, U(R) - межъядерный потенциал,  $\hbar = l^{a}$ . В нашем случае, для  ${}^{1}\Sigma$  состояний  $\Omega = 0$ . Для решения (8), необходимо задать аналитический вид потенциала U(R). Это можно сделать путем обработки ППЭ (представленной в численном виде) методом интерполяции либо путем аппроксимации ППЭ известными функциями межатомного взаимодействия (Морзе [17], Джеймса-Кулиджа-Вернона [18] и др. [19]). Последний подход реализован нами в программе HERZBERG для обобщенной функции Морзе [20]. Поскольку в данной работе мы проводим сравнение с результатами, полученными в группе Палдуса путем интерполяции ППЭ [10], то для более точного численного соответствия, мы провели обработку ППЭ в соответствующей программе LEVEL [21].

Решая (8), мы получаем значения энергий колебательных уровней G(v), необходимые для вычислений соответствующих молекулярных констант по разложению Данхема (5). Как видно из разложения (5), значения  $Y_{ij}^{(0)}$  зависят от количества учитываемых уровней энергии, n(v). При  $n(v) = n(Y_{ij}^{(0)})$ , решаем классическую систему линейных уравнений (5) относительно  $Y_{ij}^{(0)}$ . Таким образом, получаем спектроскопические константы, которые зависят только от нижайших колебательных уровней. При  $n(v) > n(Y_{ij}^{(0)})$  переходим к решению системы уравнений (5) методом наименьших квадратов в матричном виде:

$$\begin{pmatrix} Y_{l0}^{(0)} \\ Y_{20}^{(0)} \\ \vdots \end{pmatrix} = \begin{pmatrix} N^T N \end{pmatrix}^{-l} N^T \begin{pmatrix} G(0) \\ G(l) \\ \vdots \end{pmatrix},$$
(9)

где N – матрица коэффициентов в разложении (5):  $N_{vk} = \left| \left( v + \frac{l}{2} \right)^k \right|$ . При этом предполагается,

что нумерация колебательных уровней начинается с v = 0, 1, 2..., а степенные коэффициенты принимают значения k = 1, 2, 3... Таким образом, получаем значения того же набора молекулярных констант, но с учетом высших колебательных уровней.

## Результаты и обсуждение

Все методы, которые мы приводим для сравнения с CAS(2,2)CCSD, основаны на экспоненциальном разложении волновой функции (1). Кроме классического SR CCSD, мы приводим результаты мультиреференсного расчета Палдуса, 4R-RMR [10]. Все расчеты CAS(2,2)CCSD, 4R-RMR и SR CCSD для ППЭ  $X^{1}\Sigma^{+}$  и  $A^{1}\Sigma^{+}$  проводились в четырехкратно валентнорасщепленном сферическом базисе поляризационного типа, сс-pVQZ. В таблице 1, мы сравниваем значения энергий колебательных уровней для  $X^{1}\Sigma^{+}$  электронного состояния, полученные на разных уровнях теории CC, с экспериментальными IPA значениями [1].

Как отмечалось выше, в области предела диссоциации (Рис. 1) проявляются эффекты квазивырождения и наблюдается нарушение адиабатичности по мере растяжения связи Li—H. Расчет энергий высших колебательных уровней, без учета поправок на неадиабатичность, приводит к постепенному росту абсолютных отклонений по мере приближения к пределу диссоциации в основном X состоянии (Табл. 1) и к значительным отклонениям в A состоянии (Табл. 2). Как следствие ангармоничничности ППЭ A состояния, заметны расхождения в значениях спектроскопических констант для низших колебательных уровней (Табл. 3) и энергий диссоциаций, D<sub>e</sub>, D<sub>0</sub> (Табл. 4).

Анализируя данные таблицы 1, отметим, что ППЭ основного состояния LiH более «аккуратно» воспроизводится в методе CAS(2,2)CCSD. Не смотря на постепенное увеличение абсолютного отклонения, область минимума ППЭ описана с точностью до 1 см<sup>-1</sup>. Относительно значений стандартного отклонения S.D., наблюдается уточнение энергий колебательных уровней по мере усложнения уровня теории CC – от SR CCSD до мультиреференсного CAS(2,2)CCSD.

В расчетах возбужденных состояний, одного детерминанта, как референсного, недостаточно. В случае молекулы LiH, возбужденное *A* состояние соответствует двум однократно возбужденным конфигурациям с равными или почти равными вкладами (Рис. 3). Поэтому, при решении нелинейной задачи XCAS(2,2)CCSD одновременно осуществляется симметризация волновой функции. Это означает, что мы «навязываем» определенные веса для конфигураций, у которых они должны быть одинаковы по симметрийным (спиновым и/или пространственным) причинам. Приближения SR-CCSD и теория Палдуса 4R-RMR для расчета основного состояния не приспособлены для расчета возбужденных состояний. Поэтому в таблице 2 мы проводим сравнение результатов расчета XCAS(2,2)CCSD ППЭ  $A^{1}\Sigma^{+}$  только с экспериментальными значениями энергий колебательных уровней (IPA).

Анализ данных таблицы 3, указывает на зависимость значений основной частоты колебаний и ангармонизма от способа обработки как экспериментальных ППЭ, так и рассчитанных в методе CASCCSD. В частности, количество колебательных уровней v, которые учитываются для расчета коэффициентов Данхема, вносит значительные поправки в значения спектроскопических констант. Известно, что частота фундаментального колебания молекулы определяется энергией низшего колебательного состояния, что подтверждается расчетами основного состояния при n(v) = 4. Константа ангармонизма первого  $Y_{20}^{(0)}$  и высших порядков  $Y_{30}^{(0)}$ ,  $Y_{40}^{(0)}$ , характеризует геометрию всей ППЭ, поэтому при n(v) = 4, получаем неоднозначные значения этого параметра, вплоть до неверного (положительного) знака для  $A^1\Sigma^+$  состояния, 15.75 см<sup>-1</sup>. С учетом высших колебательных уровней n(v) > 4, спектроскопические константы CASCCSD хорошо согласуются с экспериментальными. Константа ангармонизма  $Y_{20}^{(0)}$   $A^1\Sigma^+$  сохраняет свое отрицательное значение, что указывает на значительные эффекты неадиабатичности ППЭ первого возбужденного состояния молекулы LiH. Расхождения в значениях констант ангармониз-

ма высших порядков также снижаются, в результате учета высших колебательных уровней ППЭ.

| приводятся значения стандартного отклонения, S.D <sup>°</sup> . Все величины указаны в см <sup>-1</sup> . |             |       |        |              |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------|-------|--------|--------------|--|--|--|
| ν                                                                                                         | Эксп. (ІРА) | CCSD  | 4R-RMR | CAS(2,2)CCSD |  |  |  |
| 0                                                                                                         | 697.88      | -6.6  | -6.7   | 0.82         |  |  |  |
| 1                                                                                                         | 2057.59     | -14.8 | -15.1  | 9.79         |  |  |  |
| 2                                                                                                         | 3372.48     | -23.5 | -23.8  | 19.14        |  |  |  |
| 3                                                                                                         | 4643.37     | -25.8 | -26.3  | 23.48        |  |  |  |
| 4                                                                                                         | 5871.14     | -22.4 | -23.2  | 22.93        |  |  |  |
| 5                                                                                                         | 7056.58     | -15.0 | -16.0  | 18.41        |  |  |  |
| 6                                                                                                         | 8200.35     | -4.9  | -6.1   | 11.72        |  |  |  |
| 7                                                                                                         | 9302.95     | 7.2   | 5.6    | 3.79         |  |  |  |
| 8                                                                                                         | 10364.73    | 20.5  | 18.5   | -4.61        |  |  |  |
| 9                                                                                                         | 11385.90    | 34.6  | 32.1   | -12.96       |  |  |  |
| 10                                                                                                        | 12366.42    | 49.2  | 46.2   | -21.26       |  |  |  |
| 11                                                                                                        | 13306.04    | 64.2  | 60.4   | -29.87       |  |  |  |
| 12                                                                                                        | 14204.13    | 79.3  | 74.6   | -38.89       |  |  |  |
| 13                                                                                                        | 15059.61    | 94.5  | 88.6   | -47.02       |  |  |  |
| 14                                                                                                        | 15870.80    | 109.7 | 102.3  | -51.61       |  |  |  |
| 15                                                                                                        | 16635.24    | 125.1 | 115.6  | -51.47       |  |  |  |
| 16                                                                                                        | 17349.46    | 140.7 | 128.2  | -50.42       |  |  |  |
| 17                                                                                                        | 18008.73    | 156.5 | 140.0  | -56.23       |  |  |  |
| 18                                                                                                        | 18606.62    | 172.8 | 150.4  | -74.46       |  |  |  |
| 19                                                                                                        | 19134.53    | 190.0 | 158.8  | -89.21       |  |  |  |
| S.D.                                                                                                      |             | 90.44 | 80.83  | 39.88        |  |  |  |

**Таблица 1.** Экспериментальные IPA значения энергии колебательных уровней  $X^{1}\Sigma^{+}$  молекулы <sup>7</sup>LiH [1] и соответствующие абсолютные отклонения CCSD, 4R-RMR [10] и CAS(2,2)CCSD. В последней строчке приволятся значения станлартного отклонения S D<sup>\*</sup> Все величины указаны в см<sup>-1</sup>

\*Стандартное отклонение:  $S.D. = \sqrt{\sum_{\nu=0}^{n_k} [G(\nu) - G'(\nu)]^2 / (n_k + 1)}$ , где  $G(\nu)$  и  $G'(\nu)$  - IPA и *ab initio* 

значения энергий колебательных уровней, соответственно,  $n_k$  – макс. номер колебательного уровня

| <b>Таблица 2.</b> Экспериментальные IPA значения энергии колебательных уровней $A^{1}\Sigma^{+}$ молекулы <sup>7</sup> LiH [1] и |
|----------------------------------------------------------------------------------------------------------------------------------|
| соответствующие абсолютные отклонения XCAS(2,2)CCSD. В последней строчке приведено значение                                      |
| стандартного отклонения. S.D <sup>*</sup> . Все величины указаны в см <sup>-1</sup> .                                            |

| ν    | Эксп. (ІРА) [1] | XCAS(2,2)CCSD | ν  | Эксп. (ІРА) | XCAS(2,2)CCSD |
|------|-----------------|---------------|----|-------------|---------------|
| 0    | 131.26          | -18.142       | 8  | 2925.47     | -174.903      |
| 1    | 412.28          | -39.9544      | 9  | 3315.89     | -192.312      |
| 2    | 725.25          | -58.7456      | 10 | 3707.44     | -209.469      |
| 3    | 1060.94         | -79.0813      | 11 | 4098.53     | -226.421      |
| 4    | 1413.74         | -99.4929      | 12 | 4487.7      | -242.701      |
| 5    | 1779.57         | -119.413      | 13 | 4873.61     | -257.573      |
| 6    | 2155.19         | -138.557      | 14 | 5274.97     | -250.462      |
| 7    | 2537.91         | -157.019      | 15 | 5630.47     | -281.536      |
| S.D. |                 |               |    |             | 178.46        |

\*см. в таблице 1

**Таблица 3.** Спектроскопические константы (коэффициенты Данхема,  $Y_{ij}^{(0)}$ ) при J = 0 для X<sup>1</sup> $\Sigma^+$  и A<sup>1</sup> $\Sigma^+$ электронных состояний <sup>7</sup>LiH. Значения  $Y_{ij}^{(0)}$  получены с учетом IPA<sup>\*</sup> и (X)CAS(2,2)CCSD значений энергий G(v) нижайших n(v) = 4 и высших n(v) > 4 колебательных уровней. Величины указаны в см<sup>-1</sup>.

| . ,             |                                |                |                |                | -                   |
|-----------------|--------------------------------|----------------|----------------|----------------|---------------------|
| $G(\mathbf{v})$ | ППЭ                            | $Y_{10}^{(0)}$ | $Y_{20}^{(0)}$ | $Y_{30}^{(0)}$ | ${ m Y}_{40}^{(0)}$ |
|                 |                                |                |                | n(v) = 4       |                     |
| CAS(2,2)CCSD    | $\mathbf{v}^{1}\mathbf{v}^{+}$ | 1411.27        | -36.42         | 4.44           | -0.42               |
| Эксп. ІРА       | ΛL                             | 1408.53        | -26.17         | 1.30           | -0.14               |
| XCAS(2,2)CCSD   | $\Lambda^{1}\Sigma^{+}$        | 303.93         | -15.75         | 11.76          | -1.56               |
| Эксп. ІРА       | A Z                            | 259.05         | 4.50           | 5.30           | -0.85               |
|                 |                                |                |                | n(v) > 4       |                     |
| CAS(2,2)CCSD    | $\mathbf{v}^{1}\mathbf{v}^{+}$ | 1395.53        | -22.24         | 0.27           | -0.011              |
| Эксп. ІРА       | $\Lambda L$                    | 1412.35        | -25.89         | 0.50           | -0.016              |
| XCAS(2,2)CCSD   | $\Lambda^{1}\Sigma^{+}$        | 280.16         | 15.69          | -0.77          | 0.012               |
| Эксп. ІРА       | A L                            | 254.01         | 16.85          | -0.86          | 0.015               |
|                 |                                |                |                |                |                     |

<sup>\*</sup>Экспериментальные значения  $Y_{ij}^{(0)}$  получены при обработке данных IPA [1] для соответствующих состояний (см. энергии колебательных уровней в табл. 1, для  $X^{1}\Sigma^{+}$  и в табл. 2, для  $A^{1}\Sigma^{+}$  состояния).

В литературе четко прослеживается уточнение экспериментальных значений констант молекулярной структуры (D<sub>e</sub>, D<sub>o</sub>, R<sub>e</sub> T<sub>e</sub>), по мере развития спектроскопических методов исследования. В таблице 4 приведены рекомендуемые константы молекулярной структуры <sup>7</sup>LiH [1], в которых учитываются неадиабатические поправки для X и A состояний. Значение электронной энергии T<sub>e</sub> вычисляется как разность между энергией минимума ППЭ основного состояния  $X^{1}\Sigma^{+}$  и энергией минимума ППЭ первого возбужденного состояния  $A^{1}\Sigma^{+}$ . Энергия диссоциации  $D_{0}$  определяется как энергия отдельных атомов относительно нижайшего колебательного уровня молекулы (v = 0, J = 0 для  $X^{1}\Sigma^{+}$  и  $A^{1}\Sigma^{+}$  состояний). Экспериментальное значение D<sub>e</sub>, вычисляется как  $D_{e} = D_{o} + ZPE$ , где ZPE (zero point energy) – поправка на нулевые колебания. Экспериментальное значение ZPE вычисляют приближенно, как  $ZPE = G(0) + Y_{00}$ , где G(0) – значение энергии нулевого колебательного уровня, а  $Y_{00}$  - нулевой коэффициент Данхема (5). В наших расчетах CAS(2,2)CCSD значение D<sub>e</sub> соответствует разности энергий в точке минимума и в области диссоциации молекулы  $E_{CASCCSD}(R_{e}) - E_{CASCCSD}(5R_{e})$ , где R<sub>e</sub> – равновесная геометрия. Значение энергии диссоциации мы определяем как  $D_{o} = D_{e} - G(0)$ , без поправки на нулевой коэффициент Данхема.

**Таблица 4.** Спектроскопические константы <sup>7</sup>LiH

| <sup>7</sup> LiH                        | D <sub>e</sub> (см <sup>-1</sup> )      | $D_0 (cm^{-1})$ | $R_{e}$ (Å) | $T_{e}(cM^{-1})$ |  |  |  |
|-----------------------------------------|-----------------------------------------|-----------------|-------------|------------------|--|--|--|
|                                         | $X^{1}\Sigma^{+}$ электронное состояние |                 |             |                  |  |  |  |
| CAS(2,2)CCSD                            | 20314.8                                 | 19617.8         | 1.58        |                  |  |  |  |
| Эксперимент [1]                         | 20287.7±0.3                             | 19589.8±0.3     | 1.59        |                  |  |  |  |
| $A^{1}\Sigma^{+}$ электронное состояние |                                         |                 |             |                  |  |  |  |
| XCAS(2,2)CCSD                           | 7995.6                                  | 7846.2          | 2.41        | 26564.55         |  |  |  |
| Эксперимент [1]                         | 8681.6±0.3                              | 8550.3±0.3      | 2.59        | 26509.77         |  |  |  |
|                                         |                                         |                 |             |                  |  |  |  |

## Заключение

Теоретический анализ спектроскопических характеристик молекулы LiH продемонстрировал высокую эффективность метода CASCCSD. Проанализированы волновые функции основного  $X^{1}\Sigma^{+}$  и первого возбужденного  $A^{1}\Sigma^{+}$  состояний. Исследован характер изменения структуры точных волновых функций на всем диапазоне межъядерных расстояний.

Проведенный анализ показал, что только с учетом высших колебательных уровней для *X* и *A* состояний, удается воспроизвести спектроскопические константы с удовлетворительной точностью.

Авторы благодарят Д.И. Ляха за помощь в проведении расчетов, а также НТК «Институт монокристаллов» НАН Украины за возможность использования вычислительного кластера.

## Литература

- 1. W. S. Stwalley, W. T. Zemke, and S. C. Yang, J. Phys. Chem. Ref. Data 20, 153 (1991).
- 2. R. S. Mulliken, Phys. Ref. 50, 1028 (1936).
- T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989); R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, *ibid.* 96, 6796 (1992).
- 4. H. Partridge and S. R. Langhoff, J. Chem. Phys. 74, 2361 (1981).
- 5. B. Jönsson, B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, J. Chem. Phys. 74, 4566 (1981).
- 6. A. Boutalib and F. X. Gadéa, J. Chem. Phys. 97, 1144 (1992).
- 7. S.-Y. Liu, M. F. Daskalakis, and C. E. Dykstra, J. Chem. Phys. 85, 5877 (1986).
- 8. B. K. Lee, J. M. Stout, and C. E. Dykstra, J. Mol. Struct.: THEOCHEM 400, 57 (1997).
- 9. A. Balková, S. A. Kucharski, L. Meissner, and R. J. Bartlett, J. Chem. Phys. 95, 4311 (1991).
- 10. Xiangzhu Li and Josef Paldus, J. Chem. Phys. 118, 2470 (2003).
- 11. V. V. Ivanov, L. Adamowicz, J. Chem. Phys. 112, 21, 9258 (2000).
- 12. V. V. Ivanov, L. Adamowicz, D. I. Lyakh, J. Chem. Phys. 124, 18, 184302 (2006).
- 13. D. I. Lyakh, V. V. Ivanov, L. Adamowicz, J. Chem. Phys. 128, 7, 074101 (2008).
- 14. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al, J. Comput. Chem. 14, 1347 (1993).
- 15. I. N. Levine, Molecular Spectroscopy, Wiley Interscience publ, J. Wiley & Sons, NY, 491 p.
- 16. P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 77, 1 (2005).
- 17. P. Morse, Phys. Rev. 34, 57 (1929).
- 18. A. S. Coolidge, M. James Hubert, E. L. Vernon, Phys. Ref. 54, 726 (1938).
- 19. D. Steele, E. R. Lippincott and J. T. Venderslice, Rev. Mod. Phys. 34, 239 (1962).
- 20. В. В. Иванов, Т. А. Клименко, А. А. Толстая, Вісник Харківського національного університету, вип. 14(37), № 731, 25 (2006).
- R. J. LeRoy, LEVEL 7.4, A Computer Program Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, and Calculating Various Expectation Values and Matrix Elements, University of Waterloo, Chemical Physics Research Report CP-642R (2001).

Поступила в редакцию 22 марта 2010 г.

Т. О. Кліменко, В. В. Іванов. Спектроскопічні параметри молекули <sup>7</sup>LiH в методі CASCCSD.

В методі мультиреференсної теорії зв'язаних кластерів у повному активному просторі, розраховано поверхні потенційної енергії в основному ( $X^1\Sigma^+$ ) та збудженому ( $A^1\Sigma^+$ ) станах молекули <sup>7</sup>LiH. Проведено

аналіз експериментальних та теоретичних методів розрахунку спектроскопічних констант та енергії коливальних термів.

**Ключові слова**: теорія зв'язаних кластерів, поверхня потенційної енергії, спектроскопічні константи, гідрид літію.

T. A. Klimenko, V. V. Ivanov. CASCCSD spectroscopic constants of <sup>7</sup>LiH molecule.

The multi-reference state-specific coupled-cluster method with a complete-active-space reference has been used to calculate the potential energy curves, spectroscopic parameters, and vibrational levels for the ground  $(X^{1}\Sigma^{+})$  and excited  $(A^{1}\Sigma^{+})$  states of <sup>7</sup>LiH. We discuss experimental and theoretical methods for determining spectroscopic constants and energies of vibrational levels.

Keywords: coupled-cluster theory, potential energy curves, spectroscopic constants, lithium hydride

Kharkov University Bulletin. 2010. № 895. Chemical Series. Issue 18(41).